首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disruption of fusion results in mitochondrial heterogeneity and dysfunction   总被引:27,自引:0,他引:27  
Mitochondria undergo continual cycles of fusion and fission, and the balance of these opposing processes regulates mitochondrial morphology. Paradoxically, cells invest many resources to maintain tubular mitochondrial morphology, when reducing both fusion and fission simultaneously achieves the same end. This observation suggests a requirement for mitochondrial fusion, beyond maintenance of organelle morphology. Here, we show that cells with targeted null mutations in Mfn1 or Mfn2 retained low levels of mitochondrial fusion and escaped major cellular dysfunction. Analysis of these mutant cells showed that both homotypic and heterotypic interactions of Mfns are capable of fusion. In contrast, cells lacking both Mfn1 and Mfn2 completely lacked mitochondrial fusion and showed severe cellular defects, including poor cell growth, widespread heterogeneity of mitochondrial membrane potential, and decreased cellular respiration. Disruption of OPA1 by RNAi also blocked all mitochondrial fusion and resulted in similar cellular defects. These defects in Mfn-null or OPA1-RNAi mammalian cells were corrected upon restoration of mitochondrial fusion, unlike the irreversible defects found in fzodelta yeast. In contrast, fragmentation of mitochondria, without severe loss of fusion, did not result in such cellular defects. Our results showed that key cellular functions decline as mitochondrial fusion is progressively abrogated.  相似文献   

2.
Mitochondria are essential organelles of eukaryotic cells. Inheritance and maintenance of mitochondrial structure depend on cytoskeleton-mediated organelle transport and continuous membrane fusion and fission events. However, in Saccharomyces cerevisiae most of the known components involved in these processes are encoded by genes that are not essential for viability. Here we asked which essential genes are required for mitochondrial distribution and morphology. To address this question, we performed a systematic screen of a yeast strain collection harboring essential genes under control of a regulatable promoter. This library contains 768 yeast mutants and covers approximately two thirds of all essential yeast genes. A total of 119 essential genes were found to be required for maintenance of mitochondrial morphology. Among these, genes were highly enriched that encode proteins involved in ergosterol biosynthesis, mitochondrial protein import, actin-dependent transport processes, vesicular trafficking, and ubiquitin/26S proteasome-dependent protein degradation. We conclude that these cellular pathways play an important role in mitochondrial morphogenesis and inheritance.  相似文献   

3.
Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin‐like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1‐dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP‐induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved.  相似文献   

4.
Mitochondria actively contribute to apoptotic cell death through mechanisms including the loss of integrity of the outer mitochondrial membrane, the release of intermembrane space proteins, such as cytochrome c, in the cytosol and the caspase cascade activation. This process is the result of careful cooperation not only among members of the Bcl‐2 family but also dynamin‐related proteins. These events are often accompanied by fission of the organelle, thus linking mitochondrial dynamics to apoptosis. Emerging evidences are suggesting a fine regulation of mitochondrial morphology by Bcl‐2 family members and active participation of fission–fusion proteins in apoptosis. The debate whether in mitochondrial morphogenesis the role of Bcl‐2 family members is functionally distinct from their role in apoptosis is still open and, above all, which morphological changes are associated with cell death sensitisation. This review will cover the findings on how the mitochondrial fission and fusion machinery may intersect apoptotic pathways focusing on recent advances on the key role played by Mcl‐1.  相似文献   

5.
Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. Although these morphologic changes are considered crucial for cellular functions, the underlying mechanisms remain elusive, especially in mammalian cells. We characterized two rat mitochondrial outer membrane proteins, Mfn1 and Mfn2, with distinct tissue expressions, that are homologous to Drosophila Fzo, a GTPase involved in mitochondrial fusion. Expression of the GTPase-domain mutant of Mfn2 (Mfn2(K109T)) in HeLa cells induced mitochondrial fragmentation in which Mfn2(K109T) localized at the restricted domains. Immuno-electronmicroscopy revealed that Mfn2(K109T) was concentrated at the contact domains between adjacent mitochondria, suggesting that fusion of the outer membrane was arrested at some intermediate step. Mfn1 expression induced highly connected tubular network structures depending on the functional GTPase domain. The Mfn1-induced tubular networks were suppressed by co-expression with Mfn2. In vivo depletion of either isoform by RNA interference revealed that both are required to maintain normal mitochondrial morphology. The fusion of differentially-labeled mitochondria in HeLa cells subjected to depletion of either Mfn isoform and subsequent cell fusion by hemagglutinating virus of Japan revealed that both proteins have distinct functions in mitochondrial fusion. We conclude that the two Mfn isoforms cooperate in mitochondrial fusion in mammalian cells.  相似文献   

6.
The mitochondrion is a unique organelle that serves as the main site of ATP generation needed for energy in the cell. However, mitochondria also play essential roles in cell death through apoptosis and necrosis, as well as a variety of crucial functions related to stress regulation, autophagy, lipid synthesis and calcium storage. There is a growing appreciation that mitochondrial function is regulated by the dynamics of its membrane fusion and fission; longer, fused mitochondria are optimal for ATP generation, whereas fission of mitochondria facilitates mitophagy and cell division. Despite the significance of mitochondrial homeostasis for such crucial cellular events, the intricate regulation of mitochondrial fusion and fission is only partially understood. Until very recently, only a single mitochondrial fission protein had been identified. Moreover, only now have researchers turned to address the upstream machinery that regulates mitochondrial fusion and fission proteins. Herein, we review the known GTPases involved in mitochondrial fusion and fission, but also highlight recent studies that address the mechanisms by which these GTPases are regulated. In particular, we draw attention to a substantial new body of literature linking endocytic regulatory proteins, such as the retromer VPS35 cargo selection complex subunit, to mitochondrial homeostasis. These recent studies suggest that relationships and cross‐regulation between endocytic and mitochondrial pathways may be more widespread than previously assumed.   相似文献   

7.
Dynamics of mitochondrial morphology in healthy cells and during apoptosis   总被引:11,自引:0,他引:11  
Mitochondria exist as dynamic networks that often change shape and subcellular distribution. The number and morphology of mitochondria within a cell are controlled by precisely regulated rates of organelle fusion and fission. Recent reports have described dramatic alterations in mitochondrial morphology during the early stages of apoptotic cell death, a fragmentation of the network and the remodeling of the cristae. Surprisingly, proteins discovered to control mitochondrial morphology appear to also participate in apoptosis and proteins associated with the regulation of apoptosis have been shown to affect mitochondrial ultrastructure. In this review the recent progress in understanding the mechanisms governing mitochondrial morphology and the latest advances connecting the regulation of mitochondrial morphology with programmed cell death are discussed.  相似文献   

8.
Mitochondrial morphology is determined by the balance between the opposing processes of fission and fusion, each of which is regulated by a distinct set of proteins. Abnormalities in mitochondrial dynamics have been associated with a variety of diseases, including neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, and dominant optic atrophy. Although the genetic determinants of fission and fusion are well recognized, less is known about the mechanism(s) whereby altered morphology contributes to the underlying pathophysiology of these disease states. Previous work from our laboratory identified a role for mitochondrial dynamics in intracellular pH homeostasis in both mammalian cell culture and in the genetic model organism Caenorhabditis elegans. Here we show that the acidification seen in mutant animals that have lost the ability to fuse their mitochondrial inner membrane occurs through a reactive oxygen species (ROS)-dependent mechanism and can be suppressed through the use of pharmacological antioxidants targeted specifically at the mitochondrial matrix. Physiological approaches examining the activity of endogenous mammalian acid-base transport proteins in rat liver Clone 9 cells support the idea that ROS signaling to sodium-proton exchangers contributes to acidification. Because maintaining pH homeostasis is essential for cell function and viability, the results of this work provide new insight into the pathophysiology associated with the loss of inner mitochondrial membrane fusion.  相似文献   

9.
Mitochondria are widely distributed via regulated transport in neurons, but their sites of biogenesis remain uncertain. Most mitochondrial proteins are encoded in the nuclear genome, and evidence has suggested that mitochondrial DNA (mtDNA) replication occurs mainly or entirely in the cell body. However, it has also become clear that nuclear-encoded mitochondrial proteins can be translated in the axon and that components of the mitochondrial replication machinery reside there as well. We assessed directly whether mtDNA replication can occur in the axons of chick peripheral neurons labeled with 5-bromo-2'-deoxyuridine (BrdU). In axons that were physically separated from the cell body or had disrupted organelle transport between the cell bodies and axons, a significant fraction of mtDNA synthesis continued. We also detected the mitochondrial fission protein Drp1 in neurons by immunofluorescence or expression of GFP-Drp1. Its presence and distribution on the majority of axonal mitochondria indicated that a substantial number had undergone recent division in the axon. Because the morphology of mitochondria is maintained by the balance of fission and fusion events, we either inhibited Drp1 expression by RNAi or overexpressed the fusion protein Mfn1. Both methods resulted in significantly longer mitochondria in axons, including many at a great distance from the cell body. These data indicate that mitochondria can replicate their DNA, divide, and fuse locally within the axon; thus, the biogenesis of mitochondria is not limited to the cell body.  相似文献   

10.
Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS). At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.  相似文献   

11.
哺乳动物细胞线粒体融合-分裂与钙离子信号的关系   总被引:2,自引:0,他引:2  
Zhao GJ  Lu ZQ  Yao YM 《生理科学进展》2010,41(3):171-176
线粒体是一种高度动态的细胞器,通过融合和分裂两个相反的过程来维持正常的形态结构。在哺乳动物中,多种因素影响线粒体的融合-分裂的平衡,但现已明确,线粒体融合的主要调节因子为Mfn1/2、OPA1,介导线粒体分裂的主要调节因子为Drp1、Fis1。新近研究发现,线粒体融合-分裂平衡的紊乱将导致线粒体结构和在细胞内分布的异常,进而影响细胞和线粒体对钙离子信号的反应;同时,钙离子也可通过多种机制影响线粒体的形态结构与分布。  相似文献   

12.
13.
Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.  相似文献   

14.
Santel A  Frank S 《IUBMB life》2008,60(7):448-455
Mitochondria are essential and dynamic cellular organelles differing in size, subcellular distribution, and internal structure. These aspects of mitochondrial morphology are intimately controlled by a growing number of mitochondrial morphology shaping proteins. The past decade has revealed remarkable and often unexpected new insights into the molecular regulation and physiological impact of mitochondrial morphology maintenance. Obviously, proper mitochondrial dynamics, resulting from a tightly regulated equilibrium between opposing mitochondrial fusion and fission activities, is a prerequisite for normal organelle function. Consequently, a disturbance of these activities results in mitochondrial dysfunction and, thus, can lay the foundation for human disorders. Here we specifically focus on recent advances in our understanding of the regulation, activity, and function of dynamin-related protein 1, the main factor for controlled mitochondrial fission.  相似文献   

15.
In healthy cells, fusion and fission events participate in regulating mitochondrial morphology. Disintegration of the mitochondrial reticulum into multiple punctiform organelles during apoptosis led us to examine the role of Drp1, a dynamin-related protein that mediates outer mitochondrial membrane fission. Upon induction of apoptosis, Drp1 translocates from the cytosol to mitochondria, where it preferentially localizes to potential sites of organelle division. Inhibition of Drp1 by overexpression of a dominant-negative mutant counteracts the conversion to a punctiform mitochondrial phenotype, prevents the loss of the mitochondrial membrane potential and the release of cytochrome c, and reveals a reproducible swelling of the organelles. Remarkably, inhibition of Drp1 blocks cell death, implicating mitochondrial fission as an important step in apoptosis.  相似文献   

16.
A dynamic balance of organelle fusion and fission regulates mitochondrial morphology. During apoptosis this balance is altered, leading to an extensive fragmentation of the mitochondria. Here, we describe a novel assay of mitochondrial dynamics based on confocal imaging of cells expressing a mitochondrial matrix-targeted photoactivable green fluorescent protein that enables detection and quantification of organelle fusion in living cells. Using this assay, we visualize and quantitate mitochondrial fusion rates in healthy and apoptotic cells. During apoptosis, mitochondrial fusion is blocked independently of caspase activation. The block in mitochondrial fusion occurs within the same time range as Bax coalescence on the mitochondria and outer mitochondrial membrane permeabilization, and it may be a consequence of Bax/Bak activation during apoptosis.  相似文献   

17.
Mitochondria typically form a reticular network radiating from the nucleus, creating an interconnected system that supplies the cell with essential energy and metabolites. These mitochondrial networks are regulated through the complex coordination of fission, fusion and distribution events. While a number of key mitochondrial morphology proteins have been identified, the precise mechanisms which govern their activity remain elusive. Moreover, post translational modifications including ubiquitination, phosphorylation and sumoylation of the core machinery are thought to regulate both fusion and division of the network. These proteins can undergo several different modifications depending on cellular signals, environment and energetic demands of the cell. Proteins involved in mitochondrial morphology may also have dual roles in both dynamics and apoptosis, with regulation of these proteins under tight control of the cell to ensure correct function. The absolute reliance of the cell on a functional mitochondrial network is highlighted in neurons, which are particularly vulnerable to any changes in organelle dynamics due to their unique biochemical requirements. Recent evidence suggests that defects in the shape or distribution of mitochondria correlate with the progression of neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease. This review focuses on our current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.  相似文献   

18.
线粒体分裂、融合与细胞凋亡   总被引:2,自引:0,他引:2  
线粒体是高度动态变化的细胞器,其在细胞内不断分裂、融合并形成网状结构。线粒体的分裂和融合是由多种蛋白质精确调控完成的。Drp1/Dnm1p,Fis1/Fis1p,Caf4p和Mdv1p参与线粒体分裂的调控;Mfn1/2/Fzo1p控制线粒体外膜的融合,而Mgm1p/OPA1则参与线粒体内膜的融合。在细胞凋亡过程中线粒体片段化,网状结构被破坏,线粒体嵴发生重构,抑制这一过程可以部分抑制细胞色素c的释放和细胞凋亡。线粒体形态对于细胞维持正常生理代谢和机体发育起着重要的作用,一旦出现障碍会导致严重的疾病。  相似文献   

19.
Mutations in GDAP1 lead to severe forms of the peripheral motor and sensory neuropathy, Charcot-Marie-Tooth disease (CMT), which is characterized by heterogeneous phenotypes, including pronounced axonal damage and demyelination. We show that neurons and Schwann cells express ganglioside-induced differentiation associated protein 1 (GDAP1), which suggest that both cell types may contribute to the mixed features of the disease. GDAP1 is located in the mitochondrial outer membrane and regulates the mitochondrial network. Overexpression of GDAP1 induces fragmentation of mitochondria without inducing apoptosis, affecting overall mitochondrial activity, or interfering with mitochondrial fusion. The mitochondrial fusion proteins, mitofusin 1 and 2 and Drp1(K38A), can counterbalance the GDAP1-dependent fission. GDAP1-specific knockdown by RNA interference results in a tubular mitochondrial morphology. GDAP1 truncations that are found in patients who have CMT are not targeted to mitochondria and have lost mitochondrial fragmentation activity. The latter activity also is reduced strongly for disease-associated GDAP1 point mutations. Our data indicate that an exquisitely tight control of mitochondrial dynamics, regulated by GDAP1, is crucial for the proper function of myelinated peripheral nerves.  相似文献   

20.
线粒体形态学改变与细胞凋亡   总被引:4,自引:0,他引:4  
近年来,对于线粒体形态学以及其在凋亡过程中的改变和作用的研究打破了传统的观点。正常情况下,线粒体在细胞内相互连接成管网状结构,并发生着频繁的融合与分裂。融合和分裂由一系列蛋白质介导,二者之间的动态平衡维持着线粒体的形态和功能。在细胞凋亡的早期,线粒体融合和分裂失平衡,导致线粒体管网状结构碎裂和嵴的重构,这些改变对线粒体随后的变化以及凋亡的发生具有重要的意义。融合和分裂的蛋白质不仅调控线粒体形态和细胞凋亡过程,也和某些凋亡相关疾病有关。此外,促凋亡的Bcl-2蛋白可能通过改变线粒体的构形来调控凋亡过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号