首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cleavage of bacteriophage phi 80 CI repressor by RecA protein   总被引:10,自引:0,他引:10  
We have purified the CI repressor protein of bacteriophage phi 80. Its N-terminal amino acid sequence and its amino acid composition agree with those predicted from the nucleotide sequence of the cI gene. The phi 80 CI repressor was cleaved at a Cys-Gly bond by the wildtype RecA protein in the presence of single-stranded DNA and ATP or its analogues. This cleavage site is different from other repressors such as LexA, lambda CI and P22 C2, which were cleaved at an Ala-Gly bond. The phi 80 CI repressor was cleaved at the same site by the RecA430 protein, but was not cleaved by the RecA1 protein. This effect of the bacterial recA mutations on cleavage is consistent with the fact that prophage phi 80 in recA430 cells can be induced by irradiation with ultraviolet light, while the prophage in recA1 cells cannot.  相似文献   

2.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

3.
An early event in the induction of the SOS system of Escherichia coli is RecA-mediated cleavage of the LexA repressor. RecA acts indirectly as a coprotease to stimulate repressor self-cleavage, presumably by forming a complex with LexA. How complex formation leads to cleavage is not known. As an approach to this question, it would be desirable to identify the protein-protein interaction sites on each protein. It was previously proposed that LexA and other cleavable substrates, such as phage lambda CI repressor and E. coli UmuD, bind to a cleft located between two RecA monomers in the crystal structure. To test this model, and to map the interface between RecA and its substrates, we carried out alanine-scanning mutagenesis of RecA. Twenty double mutations were made, and cells carrying them were characterized for RecA-dependent repair functions and for coprotease activity towards LexA, lambda CI, and UmuD. One mutation in the cleft region had partial defects in cleavage of CI and (as expected from previous data) of UmuD. Two mutations in the cleft region conferred constitutive cleavage towards CI but not towards LexA or UmuD. By contrast, no mutations in the cleft region or elsewhere in RecA were found to specifically impair the cleavage of LexA. Our data are consistent with binding of CI and UmuD to the cleft between two RecA monomers but do not provide support for the model in which LexA binds in this cleft.  相似文献   

4.
The DNA damage-inducible SOS response of Escherichia coli includes an error-prone translesion DNA replication activity responsible for SOS mutagenesis. In certain recA mutant strains, in which the SOS response is expressed constitutively, SOS mutagenesis is manifested as a mutator activity. Like UV mutagenesis, SOS mutator activity requires the products of the umuDC operon and depends on RecA protein for at least two essential activities: facilitating cleavage of LexA repressor to derepress SOS genes and processing UmuD protein to produce a fragment (UmuD') that is active in mutagenesis. To determine whether RecA has an additional role in SOS mutator activity, spontaneous mutability (tryptophan dependence to independence) was measured in a family of nine lexA-defective strains, each having a different recA allele, transformed or not with a plasmid that overproduces either UmuD' alone or both UmuD' and UmuC. The magnitude of SOS mutator activity in these strains, which require neither of the two known roles of RecA protein, was strongly dependent on the particular recA allele that was present. We conclude that UmuD'C does not determine the mutation rate independently of RecA and that RecA has a third essential role in SOS mutator activity.  相似文献   

5.
In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.  相似文献   

6.
H Bates  B A Bridges 《Biochimie》1991,73(4):485-489
An experimental system was used in which His+ mutations induced by ultraviolet light (UV) arise from non-photo-reversible photoproducts whereas lethality is largely determined by photoreversible photoproducts. By exposing a strain with a deletion through recA to light immediately after UV, it was possible to examine mutagenesis under conditions where survival was not significantly different from 100%. No UV mutagenesis was seen in the absence of RecA protein even though the rest of the SOS system was fully expressed due to the presence of a defective LexA repressor and the active carboxy-terminal fragment of UmuD was present as a result of an engineered plasmid-borne gene. We conclude that RecA protein has a third essential function if UV mutagenesis is to be detected in excision-deficient-bacteria. Another experiment showed that in exerting this function RecA protein does not need activation by pyrimidine dimers elsewhere on the genome, in contrast to its protein-cleavage mediation functions with LexA and UmuD proteins. RecA1730 protein blocked UV mutagenesis unless delayed photoreversal was given showing that the third function of RecA protein is not in the misincorporation step. It is therefore most likely to be in the bypass step where UmuD' and UmuC are postulated to act, although the possibility cannot be excluded that RecA protein is required for some other survival function distinct from translesion synthesis.  相似文献   

7.
Overproduction of single-stranded DNA-binding protein (SSB) in Escherichia coli led to a decrease in the basal level of repressor LexA. Expression of the LexA-controlled genes was increased differentially, depending on the affinity of the LexA repressor for each promoter: expression of the recA and sfiA genes was increased 5-fold and 1.5-fold, respectively. Despite only a slight effect on expression of sfiA, which codes for an inhibitor of cell division, bacteria overproducing SSB produced elongated cells. In fact, the effect on cell shape appeared to be essentially independent of the expression of the sfiA and recA genes. Bacteria overproducing SSB were therefore phenotypically similar to bacteria partially starved of thymine, in which filamentation results from both sfiA-dependent and sfiA-recA-independent pathways. These data indicate that excess SSB acts primarily by perturbing DNA replication, thereby favoring gratuitous activation of RecA protein to promote cleavage of LexA protein. When bacteria overproducing SSB were exposed to a DNA-damaging agent such as ultraviolet light or mitomycin C, the recA and sfiA genes were fully induced. Induction of the sfiA gene occurred, however, at higher doses in bacteria overproducing SSB protein than in bacteria with normal levels of SSB. Whereas the efficiency of excision repair was apparently increased by excess SSB, the efficiency of post-replication recombinational repair was reduced as judged by a decrease in the recombination proficiency between a prophage and ultraviolet-irradiated heteroimmune infecting phage. Following induction of ssb+ bacteria with mitomycin C, the cellular content of SSB was slightly increased. These results provide evidence that SSB modulates RecA protein-dependent activities in vivo. It is proposed that SSB favors the formation of short complexes of RecA protein and single-stranded DNA that mediate cleavage of the LexA and lambda repressors, while it delays the formation of long nucleoprotein filaments, thereby slowing down RecA-promoted recombinational events in uninduced as well as in induced bacteria.  相似文献   

8.
A RecA protein mutant deficient in its interaction with the UmuDC complex   总被引:13,自引:0,他引:13  
recA1730 is a dominant point mutation preventing SOS mutagenesis. We demonstrate here that: i) RecA1730 fails to produce mutagenesis even though UmuD' is formed, ii) recA1730, when complemented by recA+, can cleave LexA protein and it displays a UmuDC- phenotype in spite of adequate concentrations of matured UmuD' and UmuC proteins, iii) the Mut- phenotype caused by RecA1730 is partially alleviated by MucAB proteins, functional analogs of UmuDC. To explain the mutant phenotype, we postulate that recA1730 impairs a RecA function required for the positioning of the UmuD'C complex within the replisome at the site of lesions.  相似文献   

9.
Summary The phenotype of the recA1730 mutant is highly dependent on the level of expression of the RecA1730 protein. If the recA1730 gene was expressed from its own promoter, the cells were deficient in recombination and SOS induction. In contrast, when the recA1730 gene was expressed under the control of recAo98, a constitutive operator that increased the RecA1730 concentration 20-fold, cells became proficient in recombination and SOS induction. Likewise, in crude extracts, fivefold more RecA1730 than RecAwt was required to produce full cleavage of LexA protein. The requirement for a high RecA1730 concentration for recombination and LexA cleavage suggests that the recA1730 defect alters a common reaction step. In fact, in vitro data show that the impaired assembly of RecA1730 protein on single-stranded DNA (ssDNA) can account for the mutant phenotype. Purified RecA1730 protein was assayed in vitro for ssDNA binding and ATPase activities. RecA1730, like RecAwt, retained ssDNA equally well on nitrocellulose filters; this activity was specifically inhibited by a monoclonal anti-RecA antibody. However, RecA1730 protein did not form complete filaments on ssDNA, as shown by two observations: (i) most of the protein did not elute with ssDNA during gel filtration; and (ii) binding of RecA1730 to ssDNA did not protect it from being digested by DNaseI. RecA1730 hydrolysed ATP in high salt but was defective in ssDNA-dependent ATP hydrolysis. These results strongly suggest that RecA1730 binds to ATP and ssDNA but does not form normal nucleoprotein filaments.Abbreviations RecAwt RecA wind-type protein - ssDNA singlestranded DNA - dsDNA dmble-stranded DNA  相似文献   

10.
RecA protein is considered to be the most important participant in the radiation resistance of Deinococcus radiodurans. However, it is still unclear how RecA contributes to the resistance. In this study, we identified a new recA mutation (recA424) in the DNA-repair deficient mutant strain KI696, the phenotype of which is remarkably different from mutant strain rec30 carrying recA670. The properties of the gene products from the recA mutants were compared. recA424 could not complement the deficiency in Escherichia coli RecA, as found for recA670. In vitro, neither RecA424 nor RecA670 could promote DNA strand exchange under conditions in which wild-type RecA promoted the reaction, indicating that both RecA424 and Rec670 are defective in recombination activity. RecA424 promoted the autocleavage reaction of LexA in vitro, whereas RecA670 did not. The intracellular LexA level in KI696 was decreased following gamma-irradiation. However, the LexA level in strain rec30 was constant irrespective of irradiation. These results indicate that RecA424 retains co-protease activity, whereas RecA670 does not. While strain rec30 is extremely radiation sensitive, strain KI696 is only slightly sensitive. Together, these observations suggest that the co-protease activity rather than the recombination activity of RecA contributes to radiation resistance in D. radiodurans.  相似文献   

11.
The recF143 mutant of Escherichia coli is deficient in certain functions that also require the RecA protein: cell survival after DNA damage, some pathways of genetic recombination, and induction of SOS genes and temperate bacteriophage through cleavage of the LexA and phage repressors. To characterize the role of RecF in SOS induction and RecA activation, we determined the effects of the recF143 mutation on the rate of RecA-promoted cleavage of LexA, the repressor of the SOS genes. We show that RecA activation following UV irradiation is delayed by recF143 and that RecF is specifically involved in the SOS induction pathway that requires DNA replication. At 32 degrees C, the recA441 mutation partially suppresses the defect of recF mutants in inducing the SOS system in response to UV irradiation (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. R. Volkert, L. J. Margossian, and A. J. Clark, J. Bacteriol. 160:702-705, 1984); we find that this suppression occurs at the earliest detectable phase of LexA cleavage and does not require protein synthesis. Our results support the idea that following UV irradiation, RecF enhances the activation of RecA into a form that promotes LexA cleavage (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. V. V. S. Madiraju, A. Templin, and A. J. Clark, Proc. Natl. Acad. Sci. USA 85:6592-6596, 1988). In contrast to the constitutive activation phenotype of the recA441 mutant, the recA441-mediated suppression of recF is not affected by adenine and nucleosides. We also find that wild-type RecA protein is somewhat activated by adenine in the absence of DNA damage.  相似文献   

12.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

13.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

14.
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.  相似文献   

15.
In a previous study, the forward mutation spectrum induced by the chemical carcinogen N-acetoxy-N-2-acetylaminofluorene was determined (Koffel-Schwartz et al. 1984). It was found that 90% of the induced mutations are frameshift mutations located within specific sequences (mutation hot spots). Two classes of mutation hot spots were found: (i) -1 frameshift mutations occurring within runs of guanines (i.e. GGGG----GGG; (ii) -2 frameshift mutations occurring within the NarI recognition sequence (GGCGCC----GGCC). In the present work, we further investigate the genetic requirements of these frameshift events by using specific reversion assays. Like UV-induced mutagenesis, frameshift mutations occurring within runs of G's (also referred to as the "slippage pathway") require the activated form of the RecA protein (RecA*). On the other hand, frameshift mutations occurring at the NarI site (the "NarI mutation pathway") require a LexA-controlled function(s) that is not UmuDC. The LexA-controlled gene(s) that is (are) involved in this pathway remain to be identified. Moreover, this pathway does not require RecA* for the proteolytic processing of a protein other than LexA (like the cleavage of UmuD in UV-induced mutagenesis). An "additional" role of RecA can be defined as follows: (i) The non-activated form of the RecA protein acts as an inhibitor in the NarI mutation pathway. (ii) This inhibition is relieved upon activation of RecA by UV irradiation of the bacteria. (iii) A recA deletion mutant is totally proficient in the NarI mutation pathway provided the SOS system is derepressed [lexA (Def) allele]. Therefore, RecA does not actively participate in the fixation of the mutation. A molecular model for this "additional" role of RecA is proposed.  相似文献   

16.
Purification of a RecA protein analogue from Bacillus subtilis   总被引:29,自引:0,他引:29  
We have identified in Bacillus subtilis an analogue of the Escherichia coli RecA protein. Its activities suggest that it has a corresponding role in general genetic recombination and in regulation of SOS (DNA repair) functions. The B. subtilis protein (B. subtilis Rec) has a Mr of 42,000 and cross-reacts with antisera raised against E. coli RecA protein. Its level is significantly reduced in the recombination-deficient recE4 mutant. B. subtilis Rec is induced 10- to 20-fold in rec+ strains following treatment with mitomycin C, whereas it is not induced in the recombination-deficient mutants recE4, recE45, and recA1. We have purified B. subtilis Rec about 2000-fold to near homogeneity and we describe its activities. It catalyzes DNA-dependent hydrolysis of dATP at a rate comparable to that of E. coli RecA protein. However, B. subtilis Rec has a negligible ATPase activity, although ATP effectively inhibits dATP hydrolysis. In the presence of dATP, B. subtilis Rec catalyzes DNA strand transfer, assayed by the conversion of phi X174 linear duplex DNA and homologous circular single-stranded DNA to replicative form II (circular double-stranded DNA with a discontinuity in one strand). ATP does not support strand transfer by this protein. B. subtilis Rec catalyzes proteolytic cleavage of E. coli LexA repressor in a reaction that requires single-stranded DNA and nucleoside triphosphate. This result suggests that an SOS regulatory system like the E. coli system is present in B. subtilis. The B. subtilis enzyme does not promote any detectable cleavage of the E. coli bacteriophage lambda repressor.  相似文献   

17.
18.
Restoration of RecA protein activity by genetic complementation   总被引:7,自引:0,他引:7  
Summary Bacteria carrying either recA430 or recA453-441 mutations are sensitive to UV-irradiation since they amplify the synthesis of RecA protein either poorly or not at all. We show here that, in a recA453-441 (recA430) heterodiploid, UV-resistance and amplification of RecA430 protein were restored, indicating that the cellular level of RecA-associated protease activity was high enough to inactivate LexA repressor. Prophage 434 repressor was also extensively inactivated, whereas RecA430 protein alone cannot cleave this substrate. On the other hand, during growth of the recA453-441(recA430) heterodiploid at 42° C in the presence of adenine, a treatment activating only RecA441 protein, RecA441 protease activity was as high as in a recA441 haploid. In contrast, following this inducing treatment, there was no complementation between RecA441 and RecA+ proteins in a recA453-441(recA +) heterodiploid. These results indicate that multimerization of RecA protein molecules results in a functional interaction that, in some combination between RecA protein subunits, may enhance RecA-associated protease activity.Obra Social de la Caja de Ahorros de Valencia  相似文献   

19.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

20.
Previous mutational analysis of the L1 region of the RecA protein suggested that Gly-157 and Glu-158 are 'hot-spots' for the occurrence of constitutive LexA co-protease mutants (coprtc). In the present study, we clearly establish that position 157 is a hot-spot for the occurrence of such mutants, as 12 of 14 and 10 of 14 substitutions result in this phenotype for UmuD and LexA cleavage respectively. The frequency of such mutations at position 158 is somewhat lower, 8 of 13 and 5 of 13 for UmuD and LexA respectively. Comparison of the UmuD vs. LexA co-protease activity for all single mutants with substitutions at positions 154, 155, 156, 157 and 158 (47 in total) reveals that, although there is good agreement among most mutants regarding their ability to cleave both LexA and UmuD, there are two in particular (Glu-154→Asp and Glu-154→Gln) that show a clear preference for cleavage of UmuD. We also show that three second-site mutations that completely suppress coprtc activity toward LexA have little or no effect on the coprtc activity of the primary mutant toward UmuD. In addition, we observe a high frequency of second-site suppressor mutations, suggesting a functional interaction among side-chains in this region. Together, these results support the idea that the L1 region of RecA makes up part of the co-protease substrate-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号