首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
The pathogenesis of lithocholic acid (LCA-Na)-induced cholestasis involves a rapid accumulation of cholesterol in the bile canalicular membrane. Since microtubules play an important role in the intracellular transport of many materials, including cholesterol, the present study was undertaken to assess the extent to which they participate in the development of LCA-Na-induced cholestasis. Rats were pretreated with either colchicine (0.2 mumol/100 g body wt.) or saline solution 90 min before injection with LCA-Na (12 mumol/100 g body wt.). Colchicine, although not increasing bile flow by itself, significantly reduced the cholestasis caused by LCA-Na (57-32% reduction in bile flow) without affecting its metabolism into less toxic bile acids or its distribution in blood, liver or bile. Bile canalicular membranes isolated from animals treated with a combination of colchicine and LCA-Na contained less cholesterol than those treated with LCA-Na alone. However, membranes obtained from rats treated with colchicine alone contained much less cholesterol than did controls. It was found that the total amount of cholesterol accumulated within the bile canalicular membrane following LCA-Na treatment (LCA-Na + colchicine versus colchicine alone compared with LCA-Na versus controls) was unchanged by colchicine treatment. In view of these findings it is suggested that the total amount of cholesterol present within the bile canalicular membrane determines the extent of LCA-Na-induced cholestasis, LCA-Na probably moves cholesterol to the bile canalicular membrane via a microtubule independent pathway, and microtubules are unlikely to function in the transcellular transport of LCA-Na.  相似文献   

2.
ω6- and ω3-unsaturated lipid hydroperoxides decompose to yield pentane and ethane, respectively. Alloxan toxicity was studied in rats in relation to pentane and ethane produced during lipid peroxidation induced by intraperitoneal injection of 20 mg of alloxan/100 g body wt. Fifteen minutes after injection, vitamin E-deficient rats exhaled 102- and 11.2-fold more pentane and ethane, respectively, than prior to injection. Injection of 75 mg ascorbic acid/100 g body wt 30 min prior to alloxan treatment prolonged the time over which peroxidation occurred and all vitamin E-deficient rats died before 4 h. Vitamin E-deficient rats injected with 100 mg of the radical scavenger mannitol/ 100 g body wt 30 min prior to alloxan treatment were completely protected against lipid peroxidation, and none of the rats died by 4 h. Rats fed 40 iu dl-α-tocopherol acetate/kg diet or injected with 100 mg dl-α-tocopherol/100 g body wt were either totally protected against alloxan and alloxan-ascorbic acid-induced peroxidation or were only slightly affected as shown by very low-level pentane and ethane production. Thiobarbituric acid reactants in plasma, liver and pancreas 4 h after alloxan treatment reflected the prooxidant nature of ascorbic acid and alloxan, the vitamin E status of the rats and the protective effect of mannitol. Plasma glucose levels 4 h after alloxan injection were lowest in vitamin E-injected rats and highest in vitamin E-deficient rats. Only in vitamin E-deficient rats were both lipid peroxidation and significantly elevated plasma glucose levels observed by 4 h post-alloxan treatment.  相似文献   

3.
A Met5-enkephalin analog, FK33-824 (5, 10 and 20 micrograms/100 g body wt, iv) caused a dose-related increase in plasma growth hormone (GH) in urethane-anesthetized male rats. Pretreatment with cysteamine (30 mg/100 g body wt, sc), a depletor of hypothalamic somatostatin, increased the plasma GH response to FK33-824 (10 micrograms/100 g body wt, iv). Antiserum specific for rat GH-releasing factor (GRF) (0.5 ml/rat, iv) blunted GH release induced by FK33-824 (10 micrograms/100 g body wt, iv) in rats with or without cysteamine pretreatment. These results suggest that GH secretion induced by the opioid peptide is mediated, at least in part, by hypothalamic GRF in the rat.  相似文献   

4.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

5.
Cystic fibrosis liver disease (CFLD) is treated with ursodeoxycholate (UDCA). Our aim was to evaluate, in cystic fibrosis transmembrane regulator knockout (Cftr(-/-)) mice and wild-type controls, whether the supposed therapeutic action of UDCA is mediated via choleretic activity or effects on bile salt metabolism. Cftr(-/-) mice and controls, under general anesthesia, were intravenously infused with tauroursodeoxycholate (TUDCA) in increasing dosage or were fed either standard or UDCA-enriched chow (0.5% wt/wt) for 3 wk. Bile flow and bile composition were characterized. In chow-fed mice, we analyzed bile salt synthesis and pool size of cholate (CA). In both Cftr(-/-) and controls intravenous TUDCA stimulated bile flow by ~250% and dietary UDCA by ~500%, compared with untreated animals (P < 0.05). In non-UDCA-treated Cftr(-/-) mice, the proportion of CA in bile was higher compared with that in controls (61 ± 4 vs. 46 ± 4%; P < 0.05), accompanied by an increased CA synthesis [16 ± 1 vs. 10 ± 2 μmol·h(-1)·100 g body wt (BW)(-1); P < 0.05] and CA pool size (28 ± 3 vs. 19 ± 1 μmol/100 g BW; P < 0.05). In both Cftr(-/-) and controls, UDCA treatment drastically reduced the proportion of CA in bile below 5% and diminished CA synthesis (2.3 ± 0.3 vs. 2.2 ± 0.4 μmol·day(-1)·100 g BW(-1); nonsignificant) and CA pool size (3.6 ± 0.6 vs. 1.5 ± 0.3 μmol/100 g BW; P < 0.05). Acute TUDCA infusion and chronic UDCA treatment both stimulate bile flow in cystic fibrosis conditions independently from Cftr function. Chronic UDCA treatment reduces the hydrophobicity of the bile salt pool in Cftr(-/-) mice. These results support a potential beneficial effect of UDCA on bile flow and bile salt metabolism in cystic fibrosis conditions.  相似文献   

6.
Intravenous (iv) injection of FK33-824 [( D-Ala2, MePhe4, Met-(O)5-ol]-enkephalin, 8 and 16 nmole/100 g body wt), a potent Met5-enkephalin analog, and domperidone (1.2, 2.4, and 24 nmole/100 g body wt), a dopamine antagonist, resulted in a dose-related increase in plasma prolactin (PRL) levels in urethane-anesthetized male rats. PRL release induced by FK33-824 (16 nmole/100 g body wt, iv) was inhibited by intraventricular (icv) injection of TRH (0.6 nmole/rat). DN-1417 (gamma-butyrolactone-gamma-carbonyl-histidyl-prolinamide citrate, 0.6 nmole/rat, icv), a TRH analog, also blunted PRL release induced by FK33-824. PRL release induced by a smaller dose of domperidone (1.2 nmole/100 g body wt, iv) was blunted by TRH and DN-1417, whereas both peptides failed to suppress elevated PRL levels induced by larger doses of domperidone. These results suggest that TRH not only stimulates PRL secretion by acting directly at the pituitary, but has an inhibitory action on PRL release through activation of the central dopaminergic mechanism.  相似文献   

7.
Essential fatty acid (EFA) deficiency induces fat malabsorption, but the pathophysiological mechanism is unknown. Bile salts (BS) and EFA-rich biliary phospholipids affect dietary fat solubilization and chylomicron formation, respectively. We investigated whether altered biliary BS and/or phospholipid secretion mediate EFA deficiency-induced fat malabsorption in mice. Free virus breed (FVB) mice received EFA-containing (EFA(+)) or EFA-deficient (EFA(-)) chow for 8 wk. Subsequently, fat absorption, bile flow, and bile composition were determined. Identical dietary experiments were performed in multidrug resistance gene-2-deficient [Mdr2((-/-))] mice, secreting phospholipid-free bile. After 8 wk, EFA(-)-fed wild-type [Mdr2((+/+))] and Mdr2((-/-)) mice were markedly EFA deficient [plasma triene (20:3n-9)-to-tetraene (20:4n-6) ratio >0.2]. Fat absorption decreased (70.1 +/- 4.2 vs. 99.1 +/- 0.3%, P < 0.001), but bile flow and biliary BS secretion increased in EFA(-) mice compared with EFA(+) controls (4.87 +/- 0.36 vs. 2.87 +/- 0.29 microl x min(-1) x 100 g body wt(-1), P < 0.001, and 252 +/- 30 vs. 145 +/- 20 nmol x min(-1) x 100 g body wt(-1), P < 0.001, respectively). BS composition was similar in EFA(+)- and EFA(-)-fed mice. Similar to EFA(-) Mdr2((+/+)) mice, EFA(-) Mdr2((-/-)) mice developed fat malabsorption associated with twofold increase in bile flow and BS secretion. Fat malabsorption in EFA(-) mice is not due to impaired biliary BS or phospholipid secretion. We hypothesize that EFA deficiency affects intracellular processing of dietary fat by enterocytes.  相似文献   

8.
Diuretic and uricosuric properties have traditionally been attributed to corn silk, stigma/style of Zea mays L. Although the diuretic effect was confirmed, studies of the plant's effects on renal function or solute excretion were lacking. Thus, we studied the effects of corn silk aqueous extract on the urinary excretion of water, Na+, K+, and uric acid. Glomerular and proximal tubular function and Na+ tubular handling were also studied. Conscious, unrestrained adult male rats were housed in individual metabolic cages (IMC) with continuous urine collection for 5 and 3 h, following two protocols. The effects of 25, 50, 200, 350, and 500 mg/kg body wt. corn silk extract on urine volume plus Na+ and K+ excretions were studied in water-loaded conscious rats (2.5 ml/100 g body wt.) in the IMC for 5 h (Protocol 1). Kaliuresis was observed with doses of 350 (100.42 +/- 22.32-120.28 +/- 19.70 microEq/5 h/100 g body wt.; n = 13) and 500 mg/kg body wt. (94.97+/- 29.30-134.32 +/- 39.98 microEq/5h/100 g body wt.; n = 12; p<0.01), and the latter dose resulted in diuresis as well (1.98 +/- 0.44-2.41 +/- 0.41 ml/5 h/100 g body wt.; n = 12; p<0.05). The effects of a 500 mg/kg body wt. dose of corn silk extract on urine volume, Na+, K+ and uric acid excretions, and glomerular and proximal tubular function, were measured respectively by creatinine (Cler) and Li+ (ClLi) clearances and Na+ tubular handling, in water-loaded rats (5 ml/100 g body wt.) in the IMC for 3 h (Protocol 2). Clcr (294.6 +/- 73.2, n = 12, to 241.7 +/- 48.0 microl/ min/100 g body wt.; n = 13; p<0.05) and the Na+ filtered load (41.9 +/- 10.3, n = 12, to 34.3 +/- .8, n = 13, p<0.05) decreased and ClLi and Na+ excretion were unchanged, while K+ excretion (0.1044 +/- 0.0458, n=12, to 0.2289 +/- 0.0583 microEq/min/100 body wt.; n = 13; p<0.001) increased. For Na+ tubular handling, the fractional proximal tubular reabsorption (91.5 +/- 3.5, n = 12, to 87.5 +/- 3.4%; n = 13; p<0.01) decreased, and both fractional distal reabsorptions--I and II--increased (96.5 +/- 1.5, n = 12, to 97.8 +/- 0.9%; n = 13; p<0.01; and 8.2 +/- 3.5, n = 12, to 12.2 +/- 3.4%, n = 13, p<0.01, respectively). To summarize, in water-loaded conscious rats (2.5 ml/100 body wt.), corn silk aqueous extract is diuretic at a dose of 500 mg/kg body wt. and kaliuretic at doses of 350 and 500 mg/kg body wt. In water-loaded conscious rats (5.0 ml/100 g body wt.), corn silk aqueous extract is kaliuretic at a dose of 500 mg/kg body wt., but glomerular filtration and filtered load decrease without affecting proximal tubular function, Na+, or uric acid excretion.  相似文献   

9.
1. The stimulus-secretion coupling in the pancreatic exocrine responses to i.v. injection of sodium butyrate was investigated in guinea pigs in vivo and in vitro. 2. Intravenous single injection of sodium butyrate (12.5-100 mumol/100 g body wt) caused an increase in fluid and amylase secretion in a dose-dependent manner. The responses evoked by sodium butyrate (100 mumol/100 g body wt) were not affected by prior injection of atropine (0.14 mumol/100 g body wt) or hexamethonium (4 mumol/100 g body wt). 3. The chloride concentration in secreted fluid increased slightly with an increase in flow rate in response to sodium butyrate, but decreased in response to secretin. 4. The amylase release from the pancreatic segments evoked by sodium butyrate (10(-6)-10(-2) M) increased dose-dependently. The responses were potentiated in the presence of secretin (1 C.H.R.u./ml), but were suppressed in the presence of acetylcholine (10(-6) M) or in a Ca-free solution containing EGTA (10(-4) M). 5. These results suggest that the secretory effects in response to i.v. injection of sodium butyrate probably arise from direct action on the acinar cells, and that an increase in cellular calcium concentration might be an important step in the secretion process, in guinea pig exocrine pancreas.  相似文献   

10.
The effect of oral taurine supplementation on endotoxin-induced cholestasis was investigated in rat liver. At 12h following lipopolysaccharide (LPS) injection (4mg/kg body weight i.p.) bile flow and bromosulfophthalein (BSP) and taurocholate (TC) excretion were determined in the perfused liver and the expression of the canalicular transporters multidrug resistance protein 2 (Mrp2) and bile salt export pump (Bsep) was analyzed. Injection of LPS induced a significant decrease of bile flow ( 2.2+/-0.2 microl/g liver wet weight/min vs 3.3+/-0.1 microl/g liver wet weight in controls), biliary BSP excretion (10.8+/-2.2 nmol/g/min vs 21.0+/-3.8 nmol/g/min), and biliary TC excretion (114+/-23 nmol/g/min vs 228+/-8 nmol/g/min). These effects were due to transporter retrieval from the canalicular membrane and downregulation of Mrp2 and Bsep expression. In taurine-supplemented rats bile flow was 30% higher than that in untreated rats and the expression of Mrp2 and Bsep protein was increased two- to threefold. In taurine-supplemented rats there was no significant reduction of bile flow or of BSP and TC excretion at 12h following LPS injection. This protective effect of taurine was due to higher Mrp2 and Bsep protein levels compared to nonsupplemented LPS-treated rats, whereas relative Mrp2 retrieval from the canalicular membrane induced by LPS was not significantly different. LPS-induced tumor necrosis factor alpha and interleukin-1beta release were lower in taurine-fed rats; however, downregulation of Mrp2 and Bsep expression by LPS was delayed but not prevented. The data show that oral supplementation of taurine induces Mrp2 and Bsep expression and may prevent LPS-induced cholestasis.  相似文献   

11.
Estradiol-17beta-D-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 micromol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 micromol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3-4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.  相似文献   

12.
We have previously reported that basal and stimulated aldosterone production in Brattleboro rat (DI) lacking hypothalamic arginine vasopressin is lower than that observed in control Long-Evans rat (LE). In the present study, we investigated the secretion under various experimental conditions, adrenal binding sites, and the aldosterone-inhibiting effect of atrial natriuretic factor (ANF). In the conscious resting state, the plasma ANF concentration was similar between LE and DI rats. Pentobarbital anaesthesia (5 mg/100 g body wt.) reduced the plasma ANF concentration equally in both groups, with or without captopril pretreatment. Morphine (10 mg/100 g body wt.) increased ANF secretion dramatically and equally in the two groups of pentobarbital anaesthetized (2 mg/100 g body wt.) rats. In dexamethasone pretreated-pentobarbital anaesthetized rats, a concurrent i.v. ANF infusion (50 ng/min) did not change significantly the corticosterone response to ACTH (1-24) (1 mI.U./100 g body wt.) but steeply depressed ACTH-induced aldosterone production to a similar extent between DI and LE rats. A single class of adrenal ANF receptor sites was found with a similarity in high affinity and maximum binding capacity between the two groups of rats. Taken together, these results suggest that the reduced aldosterone production by Brattleboro rat adrenals is unlikely to be related to the inhibitory effect of ANF.  相似文献   

13.
Three types of asialo-transferrin were obtained from immunologically pure human transferrin by chromatography on DEAE-cellulose, followed by desialylation and affinity chromatography on a column of the immobilized asialo-glycoprotein-binding hepatic lectin from rabbit liver. Of the asialo-transferrins, type 1 was derived from the principal DEAE-cellulose chromatographic component of transferrin, i.e. the one that contains two biantennary glycans. The two other asialo-transferrins (types 2 and 3) were derived from a minor DEAE-chromatographic transferrin component, which is assumed to possess one biantennary and one triantennary glycan. The three asialo-transferrin types were indistinguishable by electrophoretic mobility, but they were readily distinguished on the basis of their binding strengths to the hepatic lectin in intact rats. Glycan structures responsible for the difference in binding strengths between asialo-transferrin types 2 and 3 are not known. Metabolic studies in rats showed that none of the individual asialo-transferrin types was capable of generating a signal for endocytosis at low doses (<1mug/100g body wt.) and, consequently, most of the injected protein was recoverable with the plasma and the liver 35min after injection. However, endocytosis and catabolism of each asialo-transferrin type was readily induced by injecting a larger dose (50-250mug/100g body wt.) of unlabelled asialo-transferrin of the same type or of a different type a short interval after the labelled dose. These findings support the view that the dose-dependent uptake of human asialo-transferrin by the hepatocyte, as established in an earlier study with asialo-transferrin made from whole transferrin [Regoeczi, Taylor, Hatton, Wong & Koj (1978) Biochem. J.174, 171-178], also holds for these asialo-transferrin subfractions. Furthermore, the present studies indicate that asialo-transferrins of different carbohydrate compositions are capable of synergistically promoting endocytosis of each other.  相似文献   

14.
The activity of liver branched-chain 2-oxo acid dehydrogenase complex was measured in rats fed on low-protein diets and given adrenaline, glucagon, insulin or dibutyryl cyclic AMP in vivo. Administration of glucagon or adrenaline (200 micrograms/100 g body wt.) resulted in a 4-fold increase in the percentage of active complex. As with glucagon and adrenaline, treatment of rats with cyclic AMP (5 mg/100 g body wt.) resulted in marked activation of branched-chain 2-oxo acid dehydrogenase. Insulin administration (1 unit/100 g body wt.) also resulted in activation of enzyme; however, these effects were less than those observed with glucagon and adrenaline. In contrast with the results obtained with low-protein-fed rats, administration of adrenaline (200 micrograms/100 g body wt.) to rats fed with an adequate amount of protein resulted in only a modest (14%) increase in the activity of the complex. The extent to which these hormones activate branched-chain 2-oxo acid dehydrogenase appears to be correlated with their ability to stimulate amino acid uptake into liver.  相似文献   

15.
In the present study HD-03, a herbal formulation was investigated for its anti-cholestatic activity in TAA-induced cholestasis in anaesthetized guinea pigs. Administration of TAA at a dose of 100 mg/kg body wt significantly reduced the bile flow, bile acid and bile salt excretion. Pretreatment with HD-03 at a dose of 750 mg/kg body wt per orally for 15 days in guinea pigs significantly prevented thioacetamide-induced changes in bile flow, bile acids and bile salts excretion. Thus, HD-03 can serve as a potent choleretic and anti-cholestatic agent.  相似文献   

16.
The effect of DMSO on cholesterol and bile acid metabolism was studied in rats. Male Sprague-Dawley rats were randomly assigned to one of two groups and given either tap water or 2% DMSO (v/v) in tap water to drink for 9 days. Both food (stock rat diet) and water were available ad libitum. Animals in both groups gained weight equally throughout the study. They also had similar liver weights (g/100 g body wt) at the end of the study (control: 5.0 +/- 0.1 (N = 6) vs DMSO: 4.9 +/- 0.1 (N = 6]. The activity of hepatic cholesterol 7 alpha-hydroxylase (pmole/mg/min), the rate-limiting enzyme of bile acid biosynthesis, was significantly (P less than 0.005) reduced in the treated animals (control: 9.7 +/- 1.0 (N = 6) vs DMSO: 4.3 +/- 0.7 (N = 6)). Plasma cholesterol (mg/dl) was significantly (P less than 0.005) elevated in the treated animals (control: 90 +/- 3 (N = 6) vs DMSO: 107 +/- 4 (N = 6)), a finding consistent with the reduced CH-7 alpha hydroxylase activity in this group. DMSO treatment did not affect either microsomal cholesterol content or hepatic glutathione content. Thus, this study has shown that DMSO treatment per se can affect cholesterol and bile acid metabolism. However, the precise mechanisms whereby DMSO exerts the observed effects are not known.  相似文献   

17.
Intracerebroventricular (icv) injection of neurotensin (NT) (2 micrograms/rat) suppressed prolactin (PRL) release induced by L-5-hydroxytryptophan (1 mg/100 g body wt, iv), prostaglandin E2(1 microgram/rat, icv), and FK33-824 (10 micrograms/100 g body wt, iv), a Met5-enkephalin analog, in urethane-anesthetized or conscious rats. In contrast, NT did not suppress elevated plasma PRL levels sustained by a large dose of domperidone (10 micrograms/100 g body wt, iv), a peripheral dopamine antagonist. In in vitro experiments, NT (10(-5) M) stimulated dopamine release from perifused rat hypothalamic fragments. These results suggest that central NT inhibits PRL secretion by stimulating dopamine release from the hypothalamus into hypophysical portal blood in the rat.  相似文献   

18.
Both male and female spontaneously hypertensive (SH) rats have an appetite for NaCl solution. The appetite is present when a choice is offered between distilled water and either isotonic or hypertonic (0.25 M) NaCl solution to drink. Total fluid intake (water plus NaCl solution) was greater for SH rats than for controls while food intakes (g/100 g body wt/day) of SH rats were not different from controls. Mean body weight of SH rats was always less than that of controls. The appetite for NaCl solution was accompanied by a significant reduction in preference (detection) threshold. SH rats could detect the difference between distilled water and NaCl solution when the concentration of the latter was 12 mEq/liter compared to a control threshold of 30 mEq/liter. The NaCl appetite and reduced NaCl preference threshold induced by spontaneous hypertension is in marked contrast to the NaCl aversion induced by other types of experimentally induced hypertension in rats. The mechanism or mechanisms responsible for these differences remain for further study.  相似文献   

19.
Noradrenergic mechanisms have a stimulatory role in regulating prolactin (PRL) secretion in the rat. We investigated the mechanism by which the alpha 2-adrenergic system stimulates PRL release in urethane-anesthetized male rats. Intracerebroventricular injection of norepinephrine (2 micrograms/rat) or epinephrine (100 ng and 1 microgram/rat) caused an increase in plasma PRL levels. The PRL increase induced by epinephrine was much greater than that by norepinephrine. Intracerebroventricular injection of phentolamine (1 microgram/rat), an alpha-antagonist, blunted the plasma PRL increase induced by epinephrine (100 ng intracerebroventricularly). Plasma PRL levels were increased by intravenous injection of alpha 2-agonists, clonidine (15 micrograms/100 g of body wt), and xylazine (200 micrograms/100 g of body wt). Plasma PRL increase induced by clonidine or xylazine was suppressed by intravenous injection of naloxone (125 micrograms/100 g of body wt), an opiate antagonist. These findings suggest that alpha 2-adrenergic mechanisms stimulate pituitary PRL secretion, at least partly, by activating endogenous opioid peptides in the rat.  相似文献   

20.
Administration of aprotinin, a kallikrein inhibitor, to anesthetized rats infused with 0.9% saline solution to expand the extracellular fluid volume resulted in blunted natriuresis and diuresis. Urine flow declined from 27.1 +/- 2.6 to 8.0 +/- 0.9 microliter/min/100 g body wt while sodium and potassium excretion were reduced 63 and 45%, respectively (P less than 0.01). Mean blood pressure and glomerular filtration rate were not significantly altered by aprotinin. Acute or chronic pretreatment with DOCA, to enhance kinin synthesis, failed to modify the renal excretory response to aprotinin suggesting that saline loading alone was able to induce kinin generation fully in these rats. The results indicate that aprotinin enhanced the reabsorption of filtrate in rats expanded with isotonic saline and imply an influence of renal kinins on the tubular transport of salt and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号