首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
By DNA sequence analysis, we have determined a spectrum of 61 spontaneous mutations occurring in the endogenous tonB gene in the polA1 strain of Escherichia coli. The overall mutation frequency was approximately 2.4-fold higher in the polA1 strain and this was attributable to enhanced rates of deletion and frameshift mutations. Among 39 deletions, a hot spot (17 mutations) was detected: a 13-bp deletion presumably directed by a 3-bp repeated sequence at its end points. The remaining 22 were distributed among 19 different mutations either flanked (16/19) or not flanked (3/19) by repeated sequences. Single-base frameshifts accounted for 8 mutations of either repeated (3/8) or nonrepeated (5/8) bases among which 6 were minus one frameshift. In contrast to previous reports, we did not frequently observe a 5'-GTGG-3' sequence in the vicinity of the deletions and frameshifts. The results presented here indicated an anti-deletion and anti-frameshift role for DNA polymerase I.  相似文献   

2.
J. G. de-Boer  L. S. Ripley 《Genetics》1988,118(2):181-191
The fidelity of in vitro DNA synthesis catalyzed by the large fragment of DNA polymerase I was examined. The templates, specifically designed to detect shifts to the +1 or to the -1 reading frame, are composites of M13mp8 and bacteriophage T4 rIIB DNA and were designed to assist in the identification of the types of frameshifts that are the specific consequence of DNA polymerization errors. In vitro polymerization by the Klenow fragment produced only deletions, rather than the mixture of duplications and deletions characteristic of in vivo frameshifts. The most frequent frameshifts were deletions of 1 bp opposite a template purine base. Hotspots for these deletions occurred when the template purine immediately preceded the template sequence TT. The highest mutation frequencies were seen when the TTPu consensus sequence was adjacent to G:C rich sequences in the 3' direction. The nature of the consensus sequence itself distinguishes this 1-bp deletion mechanism from those operating in DNA repeats and attributed to the misalignment of DNA primers during synthesis. Deletions that were larger than 1 or 2 bp isolated after in vitro replication were consistent with the misalignment of the primer. Deletions of 2 bp and complex frameshifts (the replacement of AA by C) were also found. Mechanisms that may account for these mutations are discussed.  相似文献   

3.
The frequency and specificity of mutations produced during in vitro DNA synthesis of the lacZ alpha gene in M13mp2 DNA by eucaryotic DNA polymerase-alpha (pol-alpha) and DNA polymerase-gamma (pol-gamma) have been determined. Pol-alpha, purified from five different sources, produces mutations resulting in loss of alpha-complementation at a frequency of 0.8-1.6%/single round of gap-filling DNA synthesis. DNA sequence analysis of 420 independent mutants produced by pol-alpha demonstrates three classes of errors. The majority of mutations result from single base substitutions, while single base frameshifts are detected at a lower but substantial frequency. Large deletions are also observed, with a frequency and specificity suggesting that they too are produced by pol-alpha in vitro. In contrast, pol-gamma is more accurate, producing mutants at a frequency of 0.3-0.5%. The specificity of pol-gamma errors is also different, since more than 90% of the mutants result from single base substitutions, while frameshift errors are not observed at a frequency significantly above background. The pol-gamma mutant spectrum also contains deletion mutations (10 of 179 mutants) presumably resulting from aberrant in vitro synthesis. When considered together with previous results using pol-beta (Kunkel, T. A. (1985) J. Biol. Chem. 260, 5787-5796) the relative accuracy of the three classes of purified vertebrate DNA polymerases for base substitutions, frameshifts, and deletions is in the order gamma greater than alpha greater than beta. These data demonstrate a correlation between the accuracy and processivity of DNA polymerization. Thus, the most accurate DNA polymerase (pol-gamma) also incorporates the most nucleotides per association with the primer-template, while the least accurate enzyme (pol-beta) is the least processive. This correlation exists both for base substitution mutations and for single base frameshifts, and is most obvious for minus-one-base frameshifts in runs of pyrimidines. In support of this correlation, increasing the processivity of pol-beta from 1 to 4-6 incorporations per association increases the accuracy of in vitro DNA synthesis by severalfold. The data imply that the processivity of DNA synthesis could be an important factor in controlling the levels of spontaneous and perhaps induced mutations.  相似文献   

4.
To verify the extent of contribution of spontaneous DNA lesions to spontaneous mutagenesis, we have developed a new genetic system to examine simultaneously both forward mutations and recombination events occurring within about 600 base pairs of a transgenic rpsL target sequence located on Escherichia coli chromosome. In a wild-type strain, the recombination events were occurring at a frequency comparable to that of point mutations within the rpsL sequence. When the cells were UV-irradiated, the recombination events were induced much more sharply than point mutations. In a recA null mutant, no recombination event was observed. These data suggest that the blockage of DNA replication, probably caused by spontaneous DNA lesions, occurs often in normally growing E. coli cells and is mainly processed by cellular functions requiring the RecA protein. However, the recA mutant strain showed elevated frequencies of single-base frameshifts and large deletions, implying a novel mutator action of this strain. A similar mutator action of the recA mutant was also observed with a plasmid-based rpsL mutation assay. Therefore, if the recombinogenic problems in DNA replication are not properly processed by the RecA function, these would be a potential source for mutagenesis leading to single-base frameshift and large deletion in E. coli. Furthermore, the single-base frameshifts induced in the recA-deficient cells appeared to be efficiently suppressed by the mutS-dependent mismatch repair system. Thus, it seems likely that the single-base frameshifts are derived from slippage errors that are not directly caused by DNA lesions but made indirectly during some kind of error-prone DNA synthesis in the recA mutant cells.  相似文献   

5.
Frameshift mutagenesis by eucaryotic DNA polymerases in vitro   总被引:23,自引:0,他引:23  
The frequency and specificity of frameshift errors produced during a single round of in vitro DNA synthesis by DNA polymerases-alpha, -beta, and -gamma (pol-alpha, -beta, and -gamma, respectively) have been determined. DNA polymerase-beta is the least accurate enzyme, producing frameshift errors at an average frequency of one error for each 1,000-3,000 nucleotides polymerized, a frequency similar to its average base substitution accuracy. DNA polymerase-alpha is approximately 10-fold more accurate, producing frameshifts at an average frequency of one error for every 10,000-30,000 nucleotides polymerized, a frequency which is about 2- to 6-fold lower than the average pol-alpha base substitution accuracy. DNA polymerase-gamma is highly accurate, producing on the average less than one frameshift error for every 200,000-400,000 nucleotides polymerized. This represents a more than 10-fold higher fidelity than for base substitutions. Among the collection of sequenced frameshifts produced by DNA polymerases-alpha and beta, both common features and distinct specificities are apparent. These specificities suggest a major role for eucaryotic DNA polymerases in modulating frameshift fidelity. Possible mechanisms for production of frameshifts are discussed in relation to the observed biases. One of these models has been experimentally supported using site-directed mutagenesis to change the primary DNA sequence of the template. Alteration of a pol-beta frameshift hotspot sequence TTTT to CTCT reduced the frequency of pol-beta-dependent minus-one-base errors at this site by more than 30-fold, suggesting that more than 97% of the errors at the TTTT run involve a slippage mechanism.  相似文献   

6.
Spontaneous frameshift mutations are an important source of genetic variation in all species and cause a large number of genetic disorders in humans. To enhance our understanding of the molecular mechanisms of frameshift mutagenesis, 583 spontaneous Trp+ revertants of two trpA frameshift alleles in Escherichia coli were isolated and DNA sequenced. In order to measure the contribution of methyl-directed mismatch repair to frameshift production, mutational spectra were constructed for both mismatch repair-proficient and repair-defective strains. The molecular origins of practically all of the frameshifts analyzed could be explained by one of six simple models based upon misalignment of the template or nascent DNA strands with or without misincorporation of primer nucleotides during DNA replication. Most frameshifts occurred within mononucleotide runs as has been shown often in previous studies but the location of the 76 frameshift sites was usually outside of runs. Mismatch repair generally was most effective in preventing the occurrence of frameshifts within runs but there was much variation from site to site. Most frameshift sites outside of runs appear to be refractory to mismatch repair although the small number of occurrences at most of these sites make firm conclusions impossible. There was a dense pattern of reversion sites within the trpA DNA region where reversion events could occur, suggesting that, in general, most DNA sequences are capable of undergoing spontaneous mutational events during replication that can lead to small deletions and insertions. Many of these errors are likely to occur at low frequencies and be tolerated as events too costly to prevent or repair. These studies also revealed an unpredicted flexibility in the primary amino acid sequence of the trpA product, the alpha subunit of tryptophan synthase.  相似文献   

7.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

8.
This paper reviews the influence of DNA repair on spontaneous and mutagen-induced mutation spectra at the base-substitution (hisG46) and -1 frameshift (hisD3052) alleles present in strains of the Salmonella (Ames) mutagenicity assay. At the frameshift allele (mostly a CGCGCGCG target), ΔuvrB influences the frequency of spontaneous hotspot mutations (−CG), duplications, and deletions, and it also shifts the sites of deletions and duplications. Cells with pKM101+ΔuvrB spontaneously produce complex frameshifts (frameshifts with an adjacent base substitution). The spontaneous frequency of 1-base insertions or concerted (templated) mutations is unaffected by DNA repair, and neither mutation is inducible by mutagens. Glu-P-1, 1-nitropyrene (1NP), and 2-acetylaminofluorene (2AAF) induce only hotspot mutations and are unaffected by pKM101, whereas benzo(a)pyrene and 4-aminobiphenyl induce only hotspot in pKM101, and hotspot plus complex in pKM101+. At the base-substitution allele (mostly a CC/GG target), the ΔuvrB allele increases spontaneous transitions in the absence of pKM101 and increases transversions in its presence. The frequency of suppressor mutations is decreased 4× by ΔuvrB, but increased 7.5× by pKM101. Both repair factors cause a shift in the proportion of mutations to the second position of the CC/GG target. With UV light and γ-rays, the ΔuvrB allele increases the proportion of transitions relative to transversions. pKM101 is required for mutagenesis by Glu-P-1 and 4-AB, and the types and positions of the substitutions are not altered by the addition of the ΔuvrB allele. Changes in DNA repair appear to cause more changes in spontaneous than in mutagen-induced mutation spectra at both alleles. There is a high correlation (r2=0.8) between a mutagen's ability to induce complex frameshifts and its relative base-substitution/frameshift mutagenic potency. A mutagen induces the same primary class of base substitution in TA100 (ΔuvrB, pKM101) as it does in Escherichia coli, mammalian cells, or rodents as well as in the p53 gene of human tumors associated with exposure to that mutagen. Thus, a mutagen induces the same primary class of base substitution in most organisms, reflecting the conserved nature of DNA replication and repair processes.  相似文献   

9.
To characterize the hisD3052 -1 frameshift allele of Salmonella typhimurium, we analyzed approximately 6000 spontaneous revertants (rev) for a 2-base deletion hotspot within the sequence (CG)4, and we sequenced approximately 500 nonhotspot rev. The reversion target is a minimum of 76 bases (nucleotides 843-918) that code for amino acids within a nonconserved region of the histidinol dehydrogenase protein. Only 0.4-3.9% were true rev. Of the following classes, 182 unique second-site mutations were identified: hotspot, complex frameshifts requiring DeltauvrB + pKM101 (TA98-specific) or not (concerted), 1-base insertions, duplications, and nonhotspot deletions. The percentages of hotspot mutations were 13.8% in TA1978 (wild type), 24.5% in UTH8413 (pKM101), 31.6% in TA1538 (DeltauvrB), and 41.0% in TA98 (DeltauvrB, pKM101). The DeltauvrB allele decreased by three times the mutant frequency (MF, rev/10(8) survivors) of duplications and increased by about two times the MF of deletions. Separately, the DeltauvrB allele or pKM101 plasmid increased by two to three times the MF of hotspot mutations; combined, they increased this MF by five times. The percentage of 1-base insertions was not influenced by either DeltauvrB or pKM101. Hotspot deletions and TA98-specific complex frameshifts are inducible by some mutagens; concerted complex frameshifts and 1-base insertions are not; and there is little evidence for mutagen-induced duplications and nonhotspot deletions. Except for the base substitutions in TA98-specific complex frameshifts, all spontaneous mutations of the hisD3052 allele are likely templated. The mechanisms may involve (1) the potential of direct and inverted repeats to undergo slippage and misalignment and to form quasi-palindromes and (2) the interaction of these sequences with DNA replication and repair proteins.  相似文献   

10.
The DNA sequences of 185 independent spontaneous frameshift mutations in the rIIB gene of bacteriophage T4 are described. Approximately half of the frameshifts, including those at hot spot sites, are fully consistent with classical proposals that frameshift mutations are produced by a mechanism involving the misaligned pairing of repeated DNA sequences. However, the remaining frameshifts are inconsistent with this model. Correlations between the positions of two base-pair frameshifts and the bases of DNA hairpins suggest that local DNA topology might influence frameshift mutation. Warm spots for larger deletions share the property of having endpoints adjacent to DNA sequences whose complementarity to sequences a few base-pairs away suggest that non-classical DNA misalignments may participate in deletion mutation. A model for duplication mutation as a consequence of strand displacement synthesis is discussed. In all, 15 frameshifts were complex combinations of frameshifts and base substitutions. Three of these were identical, and have extended homology to a sequence 256 base-pairs away that is likely to participate in the mutational event; the remainder are unique combinations of frameshifts and transversions. The frequency and diversity of complex mutants suggest a challenge to the assumption that the molecular evolution of DNA must depend primarily upon the accumulation of single nucleotide changes.  相似文献   

11.
D. Dillon  D. Stadler 《Genetics》1994,138(1):61-74
Sequence analysis of 34 mtr mutations has yielded the first molecular spectrum of spontaneous mutants in Neurospora crassa. The great majority of the mutations are base substitutions (48%) or deletions (35%). In addition, sequence analysis of the entire mtr region, including the 1472-base pair open reading frame and 1205 base pairs of flanking DNA, was performed in both the Oak Ridge and Mauriceville strains of Neurospora, which are known to be divergent at the DNA level. Sixteen sequence differences between these two strains have been found in the mtr region, with 13 of these in DNA flanking the open reading frame. The differences consisted of base substitutions and small frameshifts at monotonic runs. This set of sequence differences has allowed a comparison of mutations in unselected DNA to those mutations that produce a phenotypic signal. We have isolated a mutator strain (mut-1) of Neurospora in which the spontaneous mutation rate at various loci is as much as 80-fold higher than in the non-mutator (wild type). Twenty-one mtr mutations in the mutator background have been sequenced and compared to the non-mutator spectrum, revealing a striking increase in -1 frameshift mutations. These frameshifts occur exclusively within or adjacent to monotonic runs and can be explained by small slippage events during DNA replication. This argues for a role of the mut-1 gene in this process.  相似文献   

12.
The Polζ translesion synthesis (TLS) DNA polymerase is responsible for over 50% of spontaneous mutagenesis and virtually all damage-induced mutagenesis in yeast. We previously demonstrated that reversion of the lys2ΔA746 −1 frameshift allele detects a novel type of +1 frameshift that is accompanied by one or more base substitutions and depends completely on the activity of Polζ. These ‘complex’ frameshifts accumulate at two discrete hotspots (HS1 and HS2) in the absence of nucleotide excision repair, and accumulate at a third location (HS3) in the additional absence of the translesion polymerase Polη. The current study investigates the sequence requirements for accumulation of Polζ-dependent complex frameshifts at these hotspots. We observed that transposing 13 bp of identity from HS1 or HS3 to a new location within LYS2 was sufficient to recapitulate these hotspots. In addition, altering the sequence immediately upstream of HS2 had no effect on the activity of the hotspot. These data support a model in which misincorporation opposite a lesion precedes and facilitates the selected slippage event. Finally, analysis of nonsense mutation revertants indicates that Polζ can simultaneously introduce multiple base substitutions in the absence of an accompanying frameshift event.  相似文献   

13.
We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.  相似文献   

14.
Mechanisms of frameshift mutagenesis by aflatoxin B1-2,3-dichloride   总被引:6,自引:0,他引:6  
In order to characterize frameshift mutagenesis by aflatoxin B1-2,3-dichloride (AFB1Cl2), we have introduced a +1 (BK8) or a -1 (HS8) frameshift within the lacZ alpha gene segment contained in the phage M13mp8 to obtain lacZ alpha- derivatives. BK8 or HS8 replicative form DNA was modified with AFB1Cl2 in vitro, transfected into appropriate Escherichia coli hosts and lacZ alpha+ revertants scored and defined by DNA sequencing. The -1 frameshift (BK8) results suggest the following. (1) The E. coli recA gene is not absolutely required for AFB1Cl2-induced frameshift mutagenesis; however, in recA+ cells, ultraviolet light (SOS) induction enhances AFB1Cl2 mutagenesis, but such ultraviolet induction is not required. The plasmid pGW270 (mucAB+) significantly enhances the AFB1Cl2-induced frameshift mutagenesis. The uvrABC+ excision system plays a major role in the repair of AFB1Cl2-induced damage. (2) Sequence analysis reveals that AFB1Cl2 induces two classes of -1 frameshift mutations: the simple class in which the frameshift is due to the loss of one base-pair, and the complex class in which the loss of a base-pair is coupled to a vicinal base substitution. Both types of mutations occur predominantly at G.C runs, which are hotspots for AFB1Cl2 damage. The complex mutations appear to be concerted events targeted by a single AFB1Cl2 adduct. The frequency of these complex mutations is significantly enhanced by mucAB activity. In this system, recA activity is required for generation of significant levels of complex mutations. An analysis of the +1 frameshifts (HS8) reveals that AFB1Cl2 induces +1 frameshifts with an efficiency comparable to that for -1 frameshifts. Most +1 frameshifts occur by the addition of a base, and a third of the additions are complex mutations because they are accompanied by at least one base substitution. All simple additions occur at G.C runs; however, in a striking contrast to spontaneous insertions, a majority of the induced events introduce an A.T pair at these sites. Our data suggest a model for the generation of base substitution as well as simple and complex frameshift mutations induced by AFB1Cl2. To the extent determined, the frameshift specificity of aflatoxin B1 activated by metabolic enzymes is similar to that of AFB1Cl2.  相似文献   

15.
The frequency and specificity of mutations produced in vitro by eucaryotic DNA polymerase-beta have been determined in a forward mutation assay using a 250-base target sequence in M13mp2 DNA. Homogeneous DNA polymerase-beta, isolated from four different sources, produces mutations at a frequency of 4-6%/single round of gap-filling DNA synthesis. DNA sequence analyses of 460 independent mutants resulting from this error-prone DNA synthesis demonstrate a wide variety of mutational events. Frameshift and base substitutions are made at approximately equal frequency and together comprise about 90% of all mutations. Two mutational "hot spots" for frameshift and base substitution mutations were observed. The characteristics of the mutations at these sites suggest that certain base substitution errors result from dislocation of template bases rather than from direct mispair formation by DNA polymerase-beta. When considering the entire target sequence, single-base frameshift mutations occur primarily in runs of identical bases, usually pyrimidines. The loss of a single base occurs 20-80 times more frequently than single-base additions and much more frequently than the loss of two or more bases. Base substitutions occur at many sites throughout the target, representing a wide spectrum of mispair formations. Averaged over a large number of phenotypically detectable sites, the base substitution error frequency is greater than one mistake for every 5000 bases polymerized. Large deletion mutations are also observed, at a frequency more than 10-fold over background, indicating that purified DNA polymerases alone are capable of producing such deletions. These data are discussed in relation to the physical and kinetic properties of the purified enzymes and with respect to the proposed role for this DNA polymerase in vivo.  相似文献   

16.
This paper describes the DNA sequence analysis of 729 independent spontaneous lacI mutation This total is comprised of 478 novel mutations and 251 previously described events, and therefore should allow a more comprehensive view of spontaneous mutation in Escherichia coli. The spectrum is dominated by a hotspot (71% of all events). Mutations at this site consist of related addition and deletion events involving a number of repetitive sequences. Here we discuss how the frequency and proportion of these events vary in different DNA repair-deficient genetic backgrounds. The distribution of non-hotspot events includes base substitutions (38%), deletions (35%), frameshifts (14%), duplications (4%) and insertion elements (4%). G:C → A:T events dominate among base substitutions, while G:C → C:G events are the least common; the remaining types of base substitution are equally represented. Among deletions, a significant number do not display repeated sequences at their endpoints (26/72). However, almost all multiply recovered events (15/17) possess repeated sequences capable of accounting for the deletion endpoints. Similarily, over of all duplications recovered (5/7) display repeated endpoints. Single-base frameshifts are equally divided between A:T and G:C sites, in each case (−) 1 events occur 3-fold more frequently that (+)1 events. A comparative analysis of each mutational class recovered to lacI spectra available in a variety of DNA repair/metabolism-deficient strains is presented here in an attempt to assess possible contributions from chemical, physical and enzymic sources of damage.  相似文献   

17.
We constructed a set of Escherichia coli strains containing deletions in genes encoding three SOS polymerases, and defective in MutS and DNA polymerase I (PolI) mismatch repair, and estimated the rate and specificity of spontaneous endogenous tonB(+)-->tonB- mutations. The rate and specificity of mutations in strains proficient or deficient in three SOS polymerases was compared and found that there was no contribution of SOS polymerases to the chromosomal tonB mutations. MutS-deficient strains displayed elevated spontaneous mutation rates, consisting of dominantly minus frameshifts and transitions. Minus frameshifts are dominated by warm spots at run-bases. Among 57 transitions (both G:C-->A:T and A:T-->G:C), 35 occurred at two hotspot sites. PolI-deficient strains possessed an increased rate of deletions and frameshifts, because of a deficiency in postreplicative deletion and frameshift mismatch corrections. Frameshifts in PolI-deficient strains occurred within the entire tonB gene at non-run and run sequences. MutS and PolI double deficiency indicated a synergistic increase in the rate of deletions, frameshifts and transitions. In this case, mutS-specific hotspots for frameshifts and transitions disappeared. The results suggested that, unlike the case previously known pertaining to postreplicative MutS mismatch repair for frameshifts and transitions and PolI mismatch repair for frameshifts and deletions, PolI can recognize and correct transition mismatches. Possible mechanisms for distinct MutS and PolI mismatch repair are discussed. A strain containing deficiencies in three SOS polymerases, MutS mismatch repair and PolI mismatch repair was also constructed. The spectrum of spontaneous mutations in this strain is considered to represent the spectrum of in vivo DNA polymerase III replication errors. The mutation rate of this strain was 219x10(-8), about a 100-fold increase relative to the wild-type strain. Uncorrected polymerase III replication errors were predominantly frameshifts and base substitutions followed by deletions.  相似文献   

18.
Spontaneous Mutation in the Escherichia Coli Laci Gene   总被引:9,自引:0,他引:9       下载免费PDF全文
R. M. Schaaper  R. L. Dunn 《Genetics》1991,129(2):317-326
To gain more detailed insight into the nature and mechanisms of spontaneous mutations, we undertook a DNA sequence analysis of a large collection of spontaneous mutations in the N-terminal region of the Escherichia coli lacI gene. This region of circa 210 base pairs is the target for dominant lacI mutations (i-d) and is suitable for studies of mutational specificity since it contains a relatively high density of detectable mutable sites. Among 414 independent i-d mutants, 70.8% were base substitutions, 17.2% deletions, 7.7% additions and 4.3% single-base frameshifts. The base substitutions were both transitions (60%) and transversions (40%), the largest single group being G.C----A.T (47% of base substitutions). All four transversions were observed. Among the 71 deletions, a hotspot (37 mutants) was present: an 87-bp deletion presumably directed by an 8-bp repeated sequence at its endpoints. The remaining 34 deletions were distributed among 29 different mutations, either flanked (13/34) or not flanked (21/34) by repeated sequences. The 32 additions comprised 29 different events, with only two containing a direct repeat at the endpoints. The single-base frameshifts were the loss of a single base from either repeated (67%) or nonrepeated (33%) bases. A comparison with the spectrum obtained previously in strains defective in DNA mismatch correction (mutH, mutL, mutS strains) yielded information about the apparent efficiency of mismatch repair. The overall effect was 260-fold but varied substantially among different classes of mutations. An interesting asymmetry was uncovered for the two types of transitions, A.T----G.C and G.C----A.T being reduced by mismatch repair 1340- and 190-fold, respectively. Explanations for this asymmetry and its possible implications for the origins of spontaneous mutations are discussed.  相似文献   

19.
Small insertions or deletions that alter the reading frame of a gene typically occur in simple repeats such as mononucleotide runs and are thought to reflect spontaneous primer-template misalignment during DNA replication. The resulting extrahelical repeat is efficiently recognized by the mismatch repair machinery, which specifically replaces the newly replicated strand to restore the original sequence. Frameshift mutagenesis is most easily studied using reversion assays, and previous studies in Saccharomyces cerevisiae suggested that the length threshold for polymerase slippage in mononucleotide runs is 4N. Because the probability of slippage is strongly correlated with run length, however, it was not clear whether shorter runs were unable to support slippage or whether the resulting frameshifts were obscured by the presence of longer runs. To address this issue, we removed all mononucleotide runs >3N from the yeast lys2ΔBgl and lys2ΔA746 frameshift reversion assays, which detect net 1-bp deletions and insertions, respectively. Analyses demonstrate that 2N and 3N runs can support primer-template misalignment, but there is striking run-specific variation in the frequency of slippage, in the accumulation of +1 vs. -1 frameshifts and in the apparent efficiency of mismatch repair. We suggest that some of this variation reflects the role of flanking sequence in initiating primer-template misalignment and that some reflects replication-independent frameshifts generated by the nonhomologous end-joining pathway. Finally, we demonstrate that nonhomologous end joining is uniquely required for the de novo creation of tandem duplications from noniterated sequence.  相似文献   

20.
We have examined the mutational specificity of 1-nitroso-8-nitropyrene (1,8-NONP), an activated metabolite of the carcinogen 1,8-dinitropyrene, in the lacI gene of Escherichia coli strains which differ with respect to nucleotide excision repair (+/- delta uvrB) and MucA/B-mediated error-prone translesion synthesis (+/- pKM101). Several different classes of mutation were recovered, of which frameshifts, base substitutions, and deletions were clearly induced by 1,8-NONP treatment. The high proportion of point mutations (> 92%) which occurred at G.C sites correlates with the percentage of 1,8-NONP-DNA adducts which occur at the C(8) position of guanine. The most prominent frameshift mutations were -(G.C) events, which were induced by 1,8-NONP treatment in all strains, occurred preferentially in runs of guanine residues, and whose frequency increased markedly with the length of the reiterated sequence. Of the base substitution mutations G.C-->T.A transversions were induced to the greatest extent by 1,8-NONP. The distribution of the G.C-->T.A transversions was not influenced by the nature of flanking bases, nor was there a strand preference for these events. The presence of plasmid pKM101 specifically increased the frequency of G.C-->T.A transversions by a factor of 30-60. In contrast, the -(G.C) frameshift mutation frequency was increased only 2-4-fold in strains harboring pKM101 as compared to strains lacking this plasmid. There was, however, a marked influence of pKM101 on the strand specificity of frameshift mutation; a preference was observed for -G events on the transcribed strand. The ability of the bacteria to carry out nucleotide excision repair had a strong effect on the frequency of all classes of mutation but did not significantly influence either the overall distribution of mutational classes or the strand specificity of G.C-->T.A transversions and -(G.C) frameshifts. Deletion mutations were induced in the delta uvr, pKM101 strain. The endpoints of the majority of the deletion mutations were G.C rich and contained regions of considerable homology. The specificity of 1,8-NONP-induced mutation suggests that DNA containing 1,8-NONP adducts can be processed through different mutational pathways depending on the DNA sequence context of the adduct and the DNA repair background of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号