首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

2.
Circular patches of bark were surgically isolated on the sides of sugar maple (Acer saccharum Marsh.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control sites cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) prevented initiation of cambial activity and xylem and phloem development in isolated areas of half of the trees. Varying degrees of cambial activity (periclinal divisions) occurred in the remaining isolated areas, but normal cambial activity and xylem and phloem development were prevented. Isolation of bark after initiation of cambial activity and phloem differentiation, but prior to initiation of xylem differentiation, resulted in the formation of very narrow xylem and phloem increments with atypically short vessel members and sieve-tube members, respectively. The xylem increments consisted primarily of parenchyma cells. Isolation of bark after initiation of xylem differentiation resulted in curtailment of secondary wall formation in the last-formed part of many increments. The last-formed vessel members of all these xylem increments were atypically short. Similarly, the last formed sieve-tube members of corresponding phloem increments were atypically short. The atypically short cells in the xylem and phloem of isolated areas reflected the effect of isolation on the cambial region, viz., the subdivision of all fusiform cells into strands of cells. Ultimately, the strands of short fusiform cells lapsed into maturity, leaving only strands of parenchymatous elements between xylem and phloem.  相似文献   

3.
Circular patches of bark were surgically isolated on the sides of trembling aspen (Populus tremuloides Michx.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control trees cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) did not prevent initiation of cambial activity and of phloem differentiation in spring but continued normal cambial activity and phloem developmented were prevent. Xylem differentiation was essentially prevented by isolation of tissues during the dormant season. The ultimate effect of isolation of the bark on the cambium, either during the dormant season or during the growing season, was subdivision of all fusiform cambial cells into strands of parenchymatous elements; the ultimate effect on the newly formed phloem was early death of the sieve elements. The most conspicuous effect of isolation of the bark after xylem differentiation had begun was the curtailment of secondary wall formation. Shortening of cells of the cambial region was reflected in the length of the vessel members which differentiated from such cells. These results indicate that normal cambial activity and xylem and phloem development require a supply of currently translocated regulatory substances from the shoots.  相似文献   

4.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

5.
Phytolacca dioica L., an evergreen tree of the Phytolaccaceae, is one of the species of Phytolacca which shows anomalous secondary thickening in its stem. This mode of thickening has been regarded as successive cambial activity or alternatively, in some more recent interpretations, as thickening by unidirectional activity of a cambial zone. The stem thickening of P. dioica is of the former type. The cambium produces fascicular strands, showing centrifugal differentiation of xylem and centripetal differentiation of phloem on opposite sides of the cambial layer, and rays are produced between the fascicular areas. In both xylem and phloem the younger elements are closer to the cambium than the older elements. Succeeding cambia arise periodically by periclinal divisions in a layer of parenchyma cells two or three cells beyond the outermost intact phloem derived from the current cambium. Each cambium forms a few parenchyma cells on both sides before it forms derivatives which mature into lignified xylem elements or conductive elements of the phloem. The parenchyma thus formed toward the outside later becomes the site of the origin of the succeeding cambium. Only one or two layers of this phloem parenchyma go on to form the new cambium; the remaining cells accumulate between the outermost phloem and the cortex. P. weberbaueri shows stem structure similar to P. dioica. P. meziana, a shrub, shows normal stem structure.  相似文献   

6.
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.  相似文献   

7.
The interrelationship between phenological events, climatic factors, periodicity of cambial activity and seasonal production of xylem was examined in Dillenia indica L. (Dilleniaceae) growing in sub-tropical wet forest of Meghalaya state, India. The reactivation of cambial activity was seen in the first week of May, 15 days after sprouting of new leaves and buds. The activity of cambium and xylem production gradually declined toward December and ceased from January to April end. There was correlation between leaf fall and cambial dormancy. It was evident from the correlation and regression analysis, the relationship between cambial activity, xylem production with climatic factors, the monthly mean minimum temperature plays an important role for the cambial activity and xylem production rather than influence by rainfall and relative humidity in D. indica L. The data were discussed in the light of cambial activity, xylem production and phenological events.  相似文献   

8.
The cambium of Pinus bungeana Zucc. resumed its activities in early April with cell proliferation and increase in immature xylem and phloem cells. Some mature xylem cells occurred dunng the last ten days of April. The xylem and phloem were rapidly formed after May. The late- wood was firstly formed in the beginning of June. It ceased to produce new xylem in early August, mid phloem cells in mid-September. The seasonal changes of polysaccharide grain content in the tissues of P. bungeana evidenced significant correlation with the annual cycle of cambial activity. Polysaccharide grains continued to increase before and after cambial reactivity and then decreased gradaally from June onwards after the late-wood had been firstly formed, until almost disappeared by next January, and again were gradually accumulated after March. Isoenzymic study revealed only one band of amylase after cambium reactivity, three peculiar bands after ceasing to produce xylem, and another two peculiar bands that occurred in early December. These 5 bands all disappeared after reactivity of cambium.  相似文献   

9.
Stem flattening in Rhynchosia pyramidalis (Fabaceae) is achieved by the development of crescent-shaped successive cambia on two opposite sides of the stem (referred hereafter as distal side). Other lateral sides of the stem (adjacent to supporting host and its opposite side, referred as proximal sides) usually possess single cambium. In the young stems, parenchymatous cells located outside to protophloem of distal side dedifferentiate and develop small segments of cambium. Concomitant to bidirectional differentiation of the secondary xylem and phloem, these newly developed cambial segments also extend in tangential directions. Differential activity of newly developed crescent-shaped cambial segments deposits more secondary xylem at median position as compared to their terminal ends of the stem on distal side; consequently, it pushes the cambial segment outside, thus resulting in crescent-shaped arcs of the cambia only on two opposite sides. After the production of 1–2 mm of secondary xylem, they cease to divide and new segments of cambial arc develop on the same side in a similar fashion. Such repeated behaviour of successive cambia development consequently leads to the formation of tangentially flat stems. The secondary xylem is diffusely porous with indistinct growth rings and is composed of vessels (wide and narrow), fibres, axial ray parenchyma cells, while phloem consisted of sieve elements, companion cells, axial and ray parenchyma. Rays in both xylem and phloem are uni- to multiseriate and heterocellular. The structure of secondary xylem and development of successive cambia is correlated with climbing habit.  相似文献   

10.
Future seasonal dynamics of wood formation in hyperarid environments are still unclear. Although temperature‐driven extension of the growing season and increased forest productivity are expected for boreal and temperate biomes under global warming, a similar trend remains questionable in water‐limited regions. We monitored cambial activity in a montane stand of ponderosa pine (Pinus ponderosa) from the Mojave Desert for 2 consecutive years (2015–2016) showing opposite‐sign anomalies between warm‐ and cold‐season precipitation. After the wet winter/spring of 2016, xylogenesis started 2 months earlier compared to 2015, characterized by abundant monsoonal (July–August) rainfall and hyperarid spring. Tree size did not influence the onset and ending of wood formation, highlighting a predominant climatic control over xylem phenological processes. Moisture conditions in the previous month, in particular soil water content and dew point, were the main drivers of cambial phenology. Latewood formation started roughly at the same time in both years; however, monsoonal precipitation triggered the formation of more false rings and density fluctuations in 2015. Because of uncertainties in future precipitation patterns simulated by global change models for the Southwestern United States, the dependency of Pponderosa on seasonal moisture implies a greater conservation challenge than for species that respond mostly to temperature conditions.  相似文献   

11.
The cambial tissues of a Populus balsamifera, Balsam poplar clone were studied during a growth season. The Klason and acid-soluble lignin contents were determined as well as the carbohydrate monomer distribution and the protein content. Both the phloem and the xylem sides of the cambial region were examined. The samples were analyzed by thioacidolysis and structures of dimeric products were determined by mass spectrometry after desulphuration. Chemical analysis of samples during the growth season was combined with microscopy of embedded specimens that showed the state of cell differentiation at the time of sampling. In spring and early summer, growth is very rapid and the intention was to collect tissue in which exclusively the middle lamella/primary cell wall had begun to lignify. The Klason lignin, protein content and carbohydrate monomer distribution showed that all the specimens from the cambial tissues sampled during a growth season contained predominantly middle lamella and primary walls; except for the developing xylem sampled in August where the carbohydrate composition showed that secondary walls were present. Thioacidolysis showed that the lignin from the cambial tissues had more condensed structures than the lignin from the reference balsam poplar clone wood. More guaiacyl than syringyl units were detected and mass spectrometry showed that the cambial tissues contained more lignin structures with end-groups than the reference sample. These results suggest that lignification in the cambial layer and early developing xylem may take place predominantly in a bulk fashion during the summer.  相似文献   

12.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

13.
Mature needles and elongating current year's needles of Pinus strobus growing in Massachusetts and P. brutia growing in Israel were collected monthly or bimonthly for seasonal analysis of leaf cambial activity. Mature needles produced secondary phloem but no xylem, and, regardless of the season, had a cambial zone from 2 to 3 cell layers wide. In the current year's needles maturation was basipetal and the procambium differentiated into primary xylem, primary phloem, and the phloem-producing vascular cambium before needle maturity. One- and 2-year-old needles of Pinus strobus produced slightly over 4 cell layers of phloem between April 15 and September 1 of 1983, with a peak production rate of about 2 cell layers per month in May and early June. One-year-old needles of P. brutia produced about 6 phloem cell layers in 1983, with phloem being produced throughout the year except in midsummer. This was contrasted by fall and winter dormancy in needles of P. strobus.  相似文献   

14.
The seasonal development of phloem in the stems of Siberian larch (Larix sibirica Ldb.) was studied over two seasons on 50–60-year-old trees growing in a natural stand in the Siberian forest-steppe zone. Trees at the age of 20–25 years were used to study metabolites in differentiating and mature phloem elements, cambial zone, and radially growing xylem cells in the periods of early and late wood formation. The development of the current-year phloem in the stems of 50–60-year-old trees started, depending on climatic conditions, in the second-third decades of May, 10–20 days before the xylem formation, and ended together with the shoot growth cessation in late July. Monitoring of the seasonal activity of cambium producing phloem sieve cells and the duration of their differentiation compared to the xylem derivatives in the cambium demonstrated that the top production of phloem and xylem cells could coincide or not coincide during the season, while their differentiation activity was always in antiphase. Sieve cells in the early phloem are separated from those in the late phloem by a layer of tannin-containing cells, which are formed in the period when late xylem formation starts. The starch content in the structural elements of phloem depends on the state of annual xylem layer development. The content of low molecular weight carbohydrates, amino acids, organic acids, and phenols in phloem cells, cambial zone, and xylem derivatives of the cambium depends on the cell type and developmental stage as well as on the type of forming wood (early or late) differing by the cell wall parameters and, hence, by the requirement for assimilates. Significant differences in the dynamics of substances per dry weight and cell were observed during cell development.  相似文献   

15.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

16.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

17.
Five Broussonetia papyrifera (L.) Vent. trees were selected in a natural stand located on the campus of Peking University, Beijing, China. The trees were ca. 5-6 years old, 3-4 m tall,and had diameters of about 3 cm measured 1.2 m above ground level. They were samplied at monthly intervals between January 28 and March 25, then at ten-day intervals between March 25 and May 20,1991. On each occasion, one 3-year-old shoot was cut from the tree. Two blocks (about 1 cm ×1 cm) contained peridern,phloem,cambium and wood with more than one annual ring were cut from every shoot,fixed in FAA,and then were prepared for anatomical studies. And on each occasion,7 layers of tissues (from periderm to mature xylem)were scraped off from the shoots and 100 mg of separate tissues were randomly extracted in 0.1 ml of 20% sucrose. The extracts were used for isoelectric-focusing in polyacrylamide gel slabs (85 mm × 60 mm × 1 mm). Benziding and odianisidine was used as substrate. After electrophoresis the gel slabs were placed in the substrate buffer until the isozyme bands were visible. Owing to the ring-porous structure of the wood of Broussonetia papyrifera, the cambial activity was comparable with that in the most ring-porous dicots. The cambium activity started about ten days before bud sprouting. On April 4,the dormant cambial zone consisted of ca. 4 cell layers. The trees did not sprout until April 16,but ca. 2 cell layers of immature xylem and phloem were formed concomitantly. Ten days later, 8-9 cell layers of xylem and ca. 5 cell layers of phloem were formed. The formation of immature phloem cells continued to increase slowly between April 4 and May 20, whereas that of immature xylem cells increased rapidly between April 4 and April 26,and then decreased between April 26 and May 20. It was suggested that differentiation of immature xylem into mature xylem lasted ca. 10 days,whereas that of immature phloem into mature one lasted ca. 20 days. There were totally 6 peroxidase isozyme bands in dormant cambial region and functional phloem. Variation of zymogram in cambial region occurred before cambial activity activated which is followed by more or less minor changes of bands in all other tissues. These indicated that several significant changes were related to the level of endogenous IAA and differentiation of vascular tissues.  相似文献   

18.
Information on the timing and dynamics of tree ring formation is essential to assess the seasonal behavior of secondary wood growth and its associated environmental influences. Araucaria angustifolia is a dominant species in highland pluvial ecosystems of southeastern South America. Previous investigations indicated that their growth rings are formed annually, but no information exists about the timing of growth ring formation and the environmental triggers influencing cambium activity. In this paper we examine inter- and intra-annual cambial activity in A. angustifolia, through anatomical and dendrochronological evidence at two study sites, and model the relationships between regional climate variation and intra-annual tree ring formation. The results confirm the annual growth ring formation in A. angustifolia and indicate that its growth season extends from October to April. Day length and temperature were the main environmental factors influencing the seasonal cambium activity. Our results evidence the dendrochronological potential of A. angustifolia for ecological and climatological studies in southeastern South America.  相似文献   

19.
AMOBI  C. C. 《Annals of botany》1973,37(1):211-218
Freshly prepared chlor-zinc-iodide was used to determine theperiodicity of wood formation at breast height (144 cm fromthe ground) in the trunks of some trees growing in the LowlandRainforest around Ibadan, Nigeria. Wood formation shows seasonal periodicity in the plants studied.The cambial derivates on the xylem side differentiate into woodcells, which at a certain stage of differentiation have abundantcellulose in their secondary walls. The cellulose stains deepblue in chlor-zinc-iodide. This has been used as a criterionfor deciding that wood formation has started. When no cellswith deep blue staining secondary walls are found the cambiumis known to be dormant or quiscent. The resumption of cambial activity is correlated positivelywith bud break and unfolding of new leaves. In Bombax buonopozenseP. Beauv. the relationship may be obscured by local cambialactivity induced by injury. Wood formation stops in the trunks either towards the end ofthe rainy season or at the early part of the dry season. Itstarts either during the dry season or at the beginning of therainy season; but the bulk of the wood is formed during therainy season. Cambial activity stops in most cases before leaffall. At the cessation of wood formation the fully lignifiedxylem elements abut on the xylem mother cells or on xylem cellswith incompletely thickened cell walls. Presence or absence of a starch-free-zone and the noding ofthe vascular rays also give indications of seasonal periodicityin wood formation. Growth rings are periodic and one growthring is generally formed each year.  相似文献   

20.
Functional sieve elements are present year-round in the secondary phloem of the trunk of Acer negundo L., the box elder tree. Judging from numerous collections made between May, 1962, and May, 1964, the seasonal cycle of phloem development is as follows: cambial activity and new phloem differentiation begin in late March or early April; xylem differentiation begins about a month later and is completed in most trees in late August. At the time of cessation of cambial activity most of the relatively wide sieve elements of the current season's increment are mature. However, numerous groups of narrow, immature sieve elements and companion cells located on the outer margin of the cambial zone do not reach maturity until fall and winter. By the time of cambial reactivation in spring, most, if not all, of these narrow elements are mature. Some of the sieve elements which reach maturity either shortly after cessation of cambial activity or during dormancy become non-functional within 6 weeks after resumption of cambial activity in spring, while others remain functional until mid-August. For the phloem increment of a given year, cessation of function begins in September with the accumulation of definitive callose on the sieve plates of the first-formed sieve elements and spreads to all but the last-formed ones by the end of December.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号