首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
We have examined expression of the genes on Salmonella pathogenicity island 1 (SPI1) during growth under the physiologically well defined standard growth condition of Luria-Bertani medium with aeration. We found that the central regulator hilA and the genes under its control are expressed at the onset of stationary phase. Interestingly, the two-component regulatory genes hilC/hilD, sirA/barA, and ompR, which are known to modulate expression from the hilA promoter (hilAp) under so-called "inducing conditions" (Luria-Bertani medium containing 0.3 m NaCl without aeration), acted under standard conditions at the stationary phase induction level. The induction of hilAp depended not on RpoS, the stationary phase sigma factor, but on the stringent signal molecule ppGpp. In the ppGpp null mutant background, hilAp showed absolutely no activity. The stationary phase induction of hilAp required spoT but not relA. Consistent with this requirement, hilAp was also induced by carbon source deprivation, which is known to transiently elevate ppGpp mediated by spoT function. The observation that amino acid starvation elicited by the addition of serine hydroxamate did not induce hilAp in a RelA(+) SpoT(+) strain suggested that, in addition to ppGpp, some other alteration accompanying entry into the stationary phase might be necessary for induction. It is speculated that during the course of infection Salmonella encounters various stressful environments that are sensed and translated to the intracellular signal, ppGpp, which allows expression of Salmonella virulence genes, including SPI1 genes.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC-like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two-component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two-component systems are not responsible for environmental regulation of SPI1. Rather, we show that 'SPI1 inducing conditions' cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network.  相似文献   

12.
13.
A prerequisite for Salmonella enterica to cause both intestinal and systemic disease is the direct injection of effector proteins into host intestinal epithelial cells via a type three secretion system (T3SS); the T3SS genes are carried on Salmonella pathogenicity island 1 (SPI1). These effector proteins induce inflammatory diarrhea and bacterial invasion. Expression of the SPI1 T3SS is tightly regulated in response to environmental signals through a variety of global regulatory systems. We have previously shown that three AraC-like regulators, HilD, HilC, and RtsA, act in a complex feed-forward regulatory loop to control the expression of the hilA gene, which encodes the direct regulator of the SPI1 structural genes. In this work, we characterize a major positive regulator of this system, the flagellar protein FliZ. Through genetic and biochemical analyses, we show that FliZ posttranslationally controls HilD to positively regulate hilA expression. This mechanism is independent of other flagellar components and is not mediated through the negative regulator HilE or through FliZ-mediated RpoS regulation. We demonstrate that FliZ controls HilD protein activity and not stability. FliZ regulates HilD in the absence of Lon protease, previously shown to degrade HilD. Indeed, it appears that FliZ, rather than HilD, is the most relevant target of Lon as it relates to SPI1 expression. Mutants lacking FliZ are significantly attenuated in their ability to colonize the intestine but are unaffected during systemic infection. The intestinal attenuation is partially dependent on SPI1, but FliZ has additional pleiotropic effects.  相似文献   

14.
15.
16.
17.
18.
19.
Invasive Salmonella has been reported to induce apoptosis in a fraction of infected macrophages within 2 to 14 h from the time of infection by a mechanism involving the type III secretion machinery encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we show that bacteria in the transition from logarithmic to stationary phase cause 90% of the macrophages to undergo phagocytosis-independent, caspase-mediated apoptosis within 30 to 60 min of infection. The ability of Salmonella to induce this rapid apoptosis was growth phase regulated and cell type restricted, with epithelial cells being resistant. Apoptosis induction was also abrogated by disruption of the hilA gene (encoding a regulator of SPI-1 genes) and by the expression of a constitutively active PhoPQ. hilA itself and a subset of SPI-1 genes were transiently expressed during aerobic growth in liquid medium. Interestingly, however, hilA was found to be required only for the expression of the prgH gene, while sipB, invA, and invF were expressed in a hilA-independent manner. The expression of SPI-1 genes and the secretion of invasion-associated proteins correlated temporally with the induction of apoptosis and are likely to represent its molecular basis. Thus, growth phase transition regulates the expression and secretion of virulence determinants and represents the most efficient environmental cue for apoptosis induction reported to date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号