首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary The plasmids R15 and RP4:: Tn1 form fused structures (85 Md and 92 Md cointegrates). The cointegrates do not resolve practically in recA Escherichia coli cells and have a mean life-time of more than 50 generations in a recA + background.The 85 Md cointegrates were generated at a frequency of 4×10–4 per R15 transconjugant during a mating between E. coli [R15; RP4:: Tn1] and E. coli [FColVBtrp:: Tn1755]. These plasmids carry two directly repeated copies of the mobile element IS8 at the junctions between R15 and RP4:: Tn1. The transposition of IS8 from RP4:: Tn1 to the R15 plasmid and the formation of hybrid molecules promoted by this process appear to be induced by the IS8 element of the Tn1755 structure during or after conjugal transfer of FColVBtrp:: Tn1755 into E. coli [R15; RP4:: Tn1] cells.The formation of the 92 Md cointegrates occurs at a frequency of 2×10–5. The fused molecules of R15 and RP4:: Tn1 carry two direct copies of an 8.65 Md R15 fragment at the junctions between these replicons. The fragment has specific features of a new transposon. This element designated Tn2353 determines resistance to Hg, Sm and Su and contains two sites for each BamHI, BglII and SalI and three sites for both EcoRI and PstI. The physical map and some other characteristics of Tn2353 are presented.Abbreviations Ap ampicillin - EtBr ethidium bromide - Km kanamycin - Md megadaltons - Sm streptomycin - Su sulfanilamide - Tc tetracycline - [] brackets indicate plasmid-carrier state  相似文献   

2.
Summary A spot test has been developed for detecting substances that enhance the transposition of Tn9 in Escherichia coli. Phage :: Tn9-infected cells were plated on chloramphenicol media and a drop of the test substance was placed at the center of the plate. Following incubation, chloramphenicol-resistant colonies appeared due to the transposition of Tn9 to the bacterial chromosome. By comparing the test plate and a control plate with respect to the number and distribution of colonies, the effect of the test compound can be evaluated.Out of over 100 compounds tested, acetate, two detergents (Brij 58 and Nonidet P40) and dimethylsulfoxide were found to enhance transposition 3–20 fold. Acetate was also found to enhance the transposition of Tn5 and Tn10. The stimulating effect of Brij 58 was lost when palmitic acid was added with the Brij 58. The nature of these substances, which we refer to as transposagens, suggests an involvement of lipid or membrane in the transposition process.Abbreviations AMP-R, CAM-R, KAN-R, SPC-R, TET-R resistance to ampicillin, chloramphenicol, kanamycin, spectinomycin and tetracycline, respectively - DMSO dimethylsulfoxide A preliminary report of this work was presented at the Fifth Mid-Atlantic Extrachromosomal Genetic Elements Meeting, 1981 (Datta, Randolph and Rosner, Plasmid 7:99, 1982)  相似文献   

3.
Summary Tn21-related transposons are widespread among bacteria and carry various resistance determinants at preferential sites, hs1 and hs2. In an in vivo integrative recombination assay it was demonstrated that these hot spots direct the integration of aminoglycoside resistance genes like aadB from Klebsiella pneumoniae and aacAI from Serratia marcescens, in a recA background. The maximum required recognition sequence which must be present in both the donor and recipient plasmids is 5 CTAAAACAAAGTTA 3 (hs2). The double-site-specific recombination occurred with a frequency of 10–5–10–6. The resulting structures include not only replicon fusion products but also more complex structures carrying two copies of the donor plasmid or simply the donor gene flanked by hs elements. hs1 and hs2 are thought to act as recognition sites for a trans-acting site-specific recombinase. By the use of Tn21 deletion derivatives, it has been shown that the recombinase is not encoded by Tn21. This new integrative recombination system is involved in the acquisition of new genes by Tn21-related transposons and their spread among bacterial populations.  相似文献   

4.
Summary Our isolate of Tn7 (named Tn7S) contains an IS1 insertion, and this IS1 can be converted into Tn9. In vitro and in vivo deletions of Tn7S and Tn7S:: Tn9 define regions of the transposon required for antibiotic resistance and transposition. Complementation of deletion mutants by cloned Tn7 fragments indicates the existence of two regions, denoted tnp7A and tnp7B, required for all transposition events. Another region, denoted tnp7C, is required for transposition from the chromosome to RP1 but not for transposition from a small IncP-1 replicon to the chromosome. The presence of Tn7S terminal sequences in an RP1 replicon reduces the transposition of a second Tn7S derivative from the chromosome by about one order of magnitude. The measured frequency of Tn7S transpositions from a small IncP-1 replicon to the chromosome depends on the particular incompatibility system used to eliminate that replicon. Genetic and physical data indicate that high frequencies of Tn7S transposition to the chromosome (40%) are triggered by the IncP-1 incompatibility reaction, thus suggesting the existence of a Tn7 mechanism for sensing the state of the carrier replicon.  相似文献   

5.
Summary A system for the direct selection of intra- and inter-molecular transposition events has been used to show that intra-molecular transposition of Tn1 generates deletions and inversions and requires the tnpA but not the tnpR gene product, as predicted by current models of transposition. Intra-molecular Tn1 transposition is much less limited by transposition immunity than inter-molecular transposition, and occurs at frequencies comparable to those for inter-molecular transposition. The selection system, which uses the bacteriophage cI-PR region as a target can be used to select, quantify, and characterize any spontaneous or induced mutations.  相似文献   

6.
The carbazole-catabolic plasmid pCAR1 isolated from Pseudomonas resinovorans strain CA10 was sequenced in its entirety; and it was found that pCAR1 carries the class II transposon Tn4676 containing carbazole-degradative genes. In this study, a new plasmid designated pCAR2 was isolated from P. putida strain HS01 that was a transconjugant from mating between the carbazole-degrader Pseudomonas sp. strain K23 and P. putida strain DS1. Southern hybridization and nucleotide sequence analysis of pCAR1 and pCAR2 revealed that the whole backbone structure was very similar in each. Plasmid pCAR2 was self-transmissible, because it was transferred from strain HS01 to P. fluorescens strain IAM12022 at the frequency of 2×10–7 per recipient cell. After the serial transfer of strain HS01 on rich medium, we detected the transposition of Tn4676 from pCAR2 to the HS01 chromosome. The chromosome-located copy of Tn4676 was flanked by a 6-bp target duplication, 5-AACATC-3. These results experimentally demonstrated the transferability of pCAR2 and the functionality of Tn4676 on pCAR2. It was clearly shown that plasmid pCAR2 and transposon Tn4676 are active mobile genetic elements that can mediate the horizontal transfer of genes for the catabolism of carbazole.  相似文献   

7.
Summary Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA + host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA - strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA - strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA - strain, has allowed the localization of the Tn3 sequences necessary for the recombination event.  相似文献   

8.
Summary Two derivatives of the prokaryotic transposon Tn5 were constructed in vitro. In Tn5-233, the central area of Tn5, which carries resistance to kanamycin/neomycin, bleomycin and streptomycin, is replaced by a fragment carrying resistance to the aminocyclitol antibiotics gentamycin/kanamycin and streptomycin/spectinomycin. In Tn5-235, the Escherichia coli -galactosidase gene is inserted within the streptomycin resistance gene of Tn5, and constitutively expressed from a Tn5 promoter. Both constructs transpose with about the same frequency as Tn5 in Escherichia coli and Rhizobium meliloti. When a Tn5-derivative is introduced into an R. meliloti strain which already contains a different Tn5-derivative, in situ transposon replacement is obtained at high frequency, presumably by a pair of crossovers between the IS50 sequences at the ends of the incoming and resident transposons. In this way we converted a previously isolated recA::Tn5 mutant into the corresponding recA::Tn5-233 strain, which can now be used as a genetic background in the study of complementation of other Tn5-induced mutations. We also replaced the drug markers of several Tn5-induced exo mutants, which we were then able to map relative to each other by transduction with phage M12. In a strain carrying Tn5-235 located near Tn5-233, we were able to isolate deletions of the intervening markers, presumably resulting from general recombination between the two transposons, by screening for loss of the Lac+ phenotype. Unlike Tn5 itself, resident Tn5-233 does not appear to suppress transposition of another incoming Tn5-derivative.Abbreviations bp base pairs - Nm neomycin - Km kanamycin - Sm streptomycin - Sp spectinomycin - Gm gentamycin - Tc tetracycline - Tp trimethoprim - Ot oxytetracycline - Rf rifampicin - Xgal 5-bromo-4-chloro-3-indolyl--d-galactoside  相似文献   

9.
Summary By assaying transposition of Tn5 from b221 cI857 rex::Tn5 (Berg 1977) in PolA-proficient and deficient cells, both the polymerase activity and 5 to 3 exonuclease acivity of DNA polymerase I have been shown to be required for transposition. This requirement could not be observed in three other systems in which the transposon donor replicon had existed in the PolA-proficient and deficient cells before the transposition event to be assayed occurred. By analogy to Tn3, this may indicate that the repressor encoded by Tn5 has already been expressed and hence become rate-limiting in the overall transposition process, even in PolA-deficient cells still possessing a residual activity. One polA mutant was found among more than 50 transposition-deficient (tnp) mutants isolated by the use of b221 cI857 rex::Tn5.  相似文献   

10.
Summary The purpose of this work was to localize the DNA regions necessary for the transposition of Tn7. Several deletions of Tn7 were constructed by the excision of DNA fragments between restriction sites. The ability of these deleted Tn7s to transpose onto the recipient plasmid RP4 was examined. All the deleted Tn7s isolated in this work had lost their transposing capability. The possibility of complementing them was studied using plasmids containing all or part of Tn7. Two deleted Tn7s could not be complemented by an entire Tn7 indicating that a DNA sequence greater than the 42 bp terminal sequence is needed for recognition of the transposon by a transposition function. Four other deleted Tn7s could be complemented by Tn7. One of these was studied intensively in complementation experiments using different parts of Tn7 to obtain transposition. The results obtained allow us to propose that all genes needed for transposition of Tn7 onto plasmids are contained in a DNA segment of between 6.0 and 7.4 kb. Furthermore, one essential function must be contained in a DNA fragment longer than 2.5 kb on the right-hand end of Tn7. The classification of Tn7 with regard to the other transposable elements is discussed.  相似文献   

11.
Summary It has been well established that Tn3 and its relatives transpose from one replicon to another by two successive reactions: formation of the cointegrate molecule and resolution from it. Whether or not the 9300 base pair tetracycline resistance transposon Tn10 transposes in the same manner as Tn3 was investigated by two methods.In the first method, 55, a lambda phage carrying Tn10 was lysogenized in an Escherichia coli strain carrying a Tn10 insertion; the phage has a deletion in attP, hence it was lysogenized in a Tn10 sequence in the E. coli chromosome by reciprocal recombination. The chromosomal structure in these lysogens is equivalent to the Tn10-mediated cointegrate molecule of lambda and the E. coli chromosomal DNA. The stability of the cointegrate molecule was examined by measuring the rate of excision of lambda from the host chromosome, and was found to be stable, especially in a Rec- strain. Because of this stability, the cointegrate molecule should be accumulated if Tn10 transposes via the cointegrate molecule. Then, we examined the configuration of products made by transposition of Tn10 from 55 to the E. coli chromosome. The cointegrate molecule was found in products of Tn10 transposition in a Rec+ strain at a frequency of 5% per Tn10 transposition, but this molecule could not be found in a Rec- strain. Since transposition of Tn10 was recA-independent, absence of the cointegrate molecule formed in a RecA- strain strongly suggested that the cointegrate molecule is not an obligatory intermediate of transposition of Tn10.In the second method, mobilization of pACYC177 by R388 and by R388:: Tn10 was examined. The pACYC177 plasmid was mobilized by R388::Tn10 at a frequency of 10-4 per donor but not by R388. It occurred, in most cases, by inverse transposition of R388::Tn10 to pACYC177 forming plasmids such as pACYC177::IS10-R388-IS10. Mobilization of pACYC177 by a Tn10-mediated cointegrate in the form of pACYC177::Tn10-R388-Tn10 was not observed in crosses using a Rec- donor. These observations also suggested that transposition of Tn10 in Rec- cells does not occur via the cointegrate molecule.  相似文献   

12.
We have obtained a set ofEscherichia coli K-12 derivatives with transposon-generated Tn10 insertion mutations at thearo genes of their aromatic biosynthetic pathway. Bacteriophage NK561 (Tn10) has been used for transposon mutagenesis ofE. coli, strain BW545. Tetracycline (Tc)-resistant derivatives were screened by their Aro phenotype by growth on a minimal medium with adequate requirements. Sixaro mutant types were mapped; two strains werearoA, twoaroD, onearoB oraroE, and onearoC. A selective medium and ad-cycloserine enrichment in the presence of tetracycline were used to select for Aro, Tc-sensitive derivatives. The reversion index to aromatic-independent colonies of some derivatives was less than 2 × 10–11 per bacterium per generation. P1 transduction experiments transferred an aroA::Tn10 insertion fromE. coli BW545 to an enterotoxigenicE. coli strain from porcine origin. Derivatives of this strain beingaro, Tc-sensitive and not reverting toaro + at a detectable frequency, and many others transduced at will, may prove their usefulness as live vaccines.  相似文献   

13.
Summary The prokaryotic mercury-resistance transposon Tn501 contains a sequence, 80 nucleotides from one end, which is identical with an inverted terminal repeat (IR) of Tn21. This Tn21 IR sequence is used when Tn21 complements a TnpA- derivative of Tn501, but not when Tn501 is used for the complementation. Complementation by Tn1721 shows a preference for the normal Tn501 IRs. The element (Tn820) transposed when Tn21 is used to complement a Hg- TnpR- TnpA- Res- deletion mutant of Tn501 contains the Tn21 IR sequence at one terminus and a Tn501 IR at the other. Transposition of Tn820 can be complemented by Tn501 and Tn1721, but at a much lower frequency than transposition of the parental element (Tn819) which has two Tn501 IRs. The relationship between the transposition functions of Tn501, Tn21 and Tn1721, and available nucleotide sequence data suggest that Tn501 evolved by the transposition of a Tn21-like element into another transposable element (similar to that found within Tn1721) followed by deletion of the Tn21-like transposition functions.Abbreviations used (IR) Inverted repeat - (Cb) carbenicillin - (Cm) chloramphenicol - (Sm) streptomycin - (Su) sulphonamide - (Tc) tetracycline - (Tp) trimethoprim  相似文献   

14.
Summary The tetracycline-resistant transposon Tn10 and its high-hopper derivative Tn10HH104 were introduced into the Azotobacter vinelandii genome using suicide conjugative plasmids derived from pRK2013. Several types of mutants induced by either of these elements are described. Nif- mutants (deficient in nitrogen fixation) were easily isolated, whereas the isolation of other mutant types (auxotrophs, sugar non-users) required special selection conditions. The characterization of the mutations as transposon insertions was often complicated and sometimes required a combination of genetic and physical tests. A common source of complication, the existence of double inserts, was found among the mutants induced by Tn10HH104 but not among those induced by Tn10. Both the high-hopper and the wild-type element proved to undergo secondary transpositions, albeit at different frequencies. Another type of complication, the existence of heterozygotes, occurred because of the high level of redundancy of the A. vinelandii genome.  相似文献   

15.
The tet genes of transposon Tn10 have been mapped in a 2,200 bp DNA sequence by analysing deletion and Tn5 insertion mutations. When the tet genes were present on multi-copy plasmids the level of resistance expressed was about ten-fold lower than that determined by a single copy of Tn10 in the E. coli chromosome. The 36K tet protein known to be encoded by R100 in E. coli minicells was not detected when they harboured a multicopy tet plasmid. However, normal high levels of resistance were expressed when the tet genes were recombined into the host chromosome as part of a lambda lysogen, showing that the multicopy effect was phenotypic. Most of the Tn5 insertions and deletions in tet which caused Tcs mutations also prevented expression of high level Tcr from a chromosomal Tn10 element present in the same cell. Only those insertions in the promoter-proximal 90–130 bp of a 1,275 bp HindII fragment known to carry the gene encoding the 36K tet protein did not reduce the single copy Tn10 resistance level.A gene fusion system that results in the constitutive synthesis of -galactosidase from a tet promoter has been used to assay tet repressor activity. The basal (uninduced) -galactosidase level in cells carrying multicopy tet plasmids was 10–20 fold lower than those carrying a single copy. The tet:: Tn5 mutants defective in the trans-dominant multicopy effect still made normal amounts of tet repressor showing that repressor overproduction was not responsible for this effect. In addition a repressor-defective constitutive mutant did not exhibit a higher resistance level when located on a multicopy plasmid vector. We postulate that a regulatory mechanism recognises the amino-terminus of the tet structural gene product when attempts are being made to overproduce the protein and prevents further translation.  相似文献   

16.
Specificity of the Tn4430 target immunity signal was examined by fusing the transposase TnpA to the LacI repressor of Escherichia coli. The resulting chimeric proteins failed to impose immunity to DNA targets carrying copies of the lacO operator, though they were proficient in lacO binding in vivo and remained responsive to wild-type immunity conferred by the Tn4430 inverted repeat end. Intriguingly, the presence of lacO repeats within the target was found to strongly influence target site selection by Tn4430, but in a LacI-independent manner.Tn4430 is a transposon of the Tn3 family that was originally isolated from Bacillus thuringiensis (Fig. (Fig.11 A) (12). Transposons of this family exhibit “target immunity,” a mechanism that prevents multiple insertion of the element into the same DNA molecule (9). Immunity has also been described for two other bacterial transposons, the bacteriophage Mu (1) and Tn7 (14). In all cases, the presence of a single copy of the transposon end is sufficient to confer immunity to the target, indicating that specific recognition of the target DNA by the transposase protein plays a central role in the process (2, 6, 8, 10). In the case of Mu and Tn7, target immunity results from the interplay between the transposase (i.e., MuA and TnsAB, respectively) and an ATP-dependent DNA binding protein involved in target capture (i.e., MuB and TnsC, respectively) (3, 4). No equivalent accessory protein is found in Tn3 family transposons, indicating that the transposase is the only transposon-encoded protein involved in immunity. The mechanism of “molecular repulsion,” underlying transposition immunity of this family of transposons, remains poorly understood.Open in a separate windowFIG. 1.(A) Genetic organization of Tn4430. The transposon (4,149 bp) is delineated by two identical inverted repeats (IR) of 38 bp that are specifically contacted by the transposase TnpA. The internal recombination site (IRS; 116 bp) is where the tyrosine recombinase TnpI acts to resolve the replicative intermediates (cointegrates) of transposition (15). (B) Schematic overview of the fusion proteins used in this study. The LacI349 and TnpA coding sequences are shown as shaded and black arrows, respectively. The position of the cMyc epitope is shown as a gray box.In this study, we sought to see whether specific recognition of Tn4430 terminal inverted repeat (IR; 38 bp) by the TnpA transposase is a mandatory step in transposition immunity or whether TnpA binding to unrelated DNA sequences is sufficient to reorient target site selection. To this end, we examined whether fusion proteins between TnpA and the LacI repressor of Escherichia coli could confer transposition immunity to target molecules containing copies of the lacO operator.  相似文献   

17.
By use of recombinant DNA techniques, we have inserted the lac+ operon into a transposon (Tn3). We constructed the recombinant in such a way that the essential step in assaying for transposition consisted of screening for bacteria with a thermostable Lac+ phenotype. Our results showed that transposition of the Tn3[lac+] element occurred and that its frequency was derepressed compared to frequencies reported by others for wild-type Tn3 transposition.  相似文献   

18.
A heterozygous tandem duplication in the Escherichia coli deo operon region deoAdeoB::Tn5/ deoCdeoDthr::Tn9 with the total length approximately 150 kb, which was obtained in the conjugational mating in the HfrH strain, was examined. By means of digestion with the NotI enzyme, pulsed-field gel electrophoresis, and the conjugational transfer of the duplication in the F strain, the chromosomal rearrangement, which occurred in the duplication region upon its stabilization in the bacterial genome, was studied. In a more stable strain, two new NotI sites were shown to appear in the chromosomal region located close to the duplication, which might have resulted from the transposition of the IS50 sequence from Tn5. The data were also obtained indicating the possibility of secondary transposition of the chromosomal segment between the two new NotI sites (approximately 30 kb) in the region located near the duplication. With the use of rec + and recA strains, two types of haploid and diploid segregants generated by the duplication were studied: DeoD+ (the deoD+ allele is not expressed in the original duplication due to the polar effect of the deoB::Tn5 insertion) and DeoC DeoD. The segregation of DeoD+ clones was shown to be RecA-dependent, whereas the DeoC DeoD segregants selected on the medium that contained thymine at a low concentration (i.e., under conditions of thymine starvation) appeared at a rather high frequency. However, the relative frequency of haploid clones, which have lost the duplication, strongly decreased in the recA genome among segregants of both types.  相似文献   

19.
Summary Five mutants (called tnm) of Escherichia coli with impaired ability for transposition of Tn9 were isolated after treatment with ethyl methanesulfonate (EMS) or N-methyl-N-nitro-N-nitrosoguanidine (NG).The map locations of the tnm mutations were deterimined by a combination of Hfr matings, F episome complementation and P1 transductional mapping. The data obtained show that the five tnm mutations are located near 91 min on the Escherichia coli linkage map and are cotransducible with the metA marker with a frequency of 3%–4%. Introduction of F plasmids containing this region complements the Tnm- phenotype for the two mutants tested i.e. tnm-1 and tnm-2 are recessive in tnm +/tnm-merodiploids.  相似文献   

20.
Summary We have performed a detailed analysis of intra-and intermolecular endproducts of transposition of the compound transposon Tn903 and we show that, in our system, the transposition activity is almost entirely driven by one of the flanking insertion sequences, IS903L. The relatively inactive state of IS903R can be conferred on IS903L by changing the orientation of the internal Tn region. IS903L mediates the formation of the majority of adjacent deletions, insertion/inversions nd cointegrates, all of which are representative of replicative transposition; only a very low level of conservative transposition can be observed. Our results are discussed in relation to those showing that Tn903 uses predominantly the conservative pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号