首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P Li  B Chen  Z Song  Y Song  Y Yang  P Ma  H Wang  J Ying  P Ren  L Yang  G Gao  S Jin  Q Bao  H Yang 《Gene》2012,507(2):125-134
As one of the pathogens of hospital-acquired infections, Acinetobacter baumannii poses great challenges to the public health. A. baumannii phage could be an effective way to fight multi-resistant A. baumannii. Here, we completed the whole genome sequencing of the complete genome of A. baumannii phage AB1, which consists of 45,159bp and is a double-stranded DNA molecule with an average GC content of 37.7%. The genome encodes one tRNA gene and 85 open reading frames (ORFs) and the average size of the ORF is 531bp in length. Among 85 ORFs, only 14 have been identified to share significant sequence similarities to the genes with known functions, while 28 are similar in sequence to the genes with function-unknown genes in the database and 43 ORFs are uniquely present in the phage AB1 genome. Fourteen function-assigned genes with putative functions include five phage structure proteins, an RNA polymerase, a big sub-unit and a small sub-unit of a terminase, a methylase and a recombinase and the proteins involved in DNA replication and so on. Multiple sequence alignment was conducted among those homologous proteins and the phylogenetic trees were reconstructed to analyze the evolutionary courses of these essential genes. From comparative genomics analysis, it turned out clearly that the frame of the phage genome mainly consisted of genes from Xanthomonas phages, Burkholderia ambifaria phages and Enterobacteria phages and while it comprises genes of its host A. baumannii only sporadically. The mosaic feature of the phage genome suggested that the horizontal gene transfer occurred among the phage genomes and between the phages and the host bacterium genomes. Analyzing the genome sequences of the phages should lay sound foundation to investigate how phages adapt to the environment and infect their hosts, and even help to facilitate the development of biological agents to deal with pathogenic bacteria.  相似文献   

2.
To formulate the optimal strategy of combatting bacterial biofilms, in this review we update current knowledge on the growing problem of biofilm formation and its resistance to antibiotics which has spurred the search for new strategies to deal with this complication. Based on recent findings, the role of bacteriophages in the prevention and elimination of biofilm-related infections has been emphasized. In vitro, ex vivo and in vivo biofilm treatment models with single bacteriophages or phage cocktails have been compared. A combined use of bacteriophages with antibiotics in vitro or in vivo confirms earlier reports of the synergistic effect of these agents in improving biofilm removal. Furthermore, studies on the application of phage-derived lysins in vitro, ex vivo or in vivo against biofilm-related infections are encouraging. The strategy of combined use of phage and antibiotics seems to be different from using lysins and antibiotics. These findings suggest that phages and lysins alone or in combination with antibiotics may be an efficient weapon against biofilm formation in vivo and ex vivo, which could be useful in formulating novel strategies to combat bacterial infections. Those findings proved to be relevant in the prevention and destruction of biofilms occurring during urinary tract infections,orthopedic implant-related infections, periodontal and peri-implant infections. In conclusion, it appears that most efficient strategy of eliminating biofilms involves phages or lysins in combination with antibiotics, but the optimal scheme of their administration requires further studies.  相似文献   

3.
For this study, an in-depth review of the classification of Lactococcus lactis phages was performed. Reference phages as well as unclassified phages from international collections were analyzed by stringent DNA-DNA hybridization studies, electron microscopy observations, and sequence analyses. A new classification scheme for lactococcal phages is proposed that reduces the current 12 groups to 8. However, two new phages (Q54 and 1706), which are unrelated to known lactococcal phages, may belong to new emerging groups. The multiplex PCR method currently used for the rapid identification of phages from the three main lactococcal groups (936, c2, and P335) was improved and tested against the other groups, none of which gave a PCR product, confirming the specificity of this detection tool. However, this method does not detect all members of the highly diverse P335 group. The lactococcal phages characterized here were deposited in the Félix d'Hérelle Reference Center for Bacterial Viruses and represent a highly diverse viral community from the dairy environment.  相似文献   

4.
Acinetobacter baumannii is an emerging bacterial pathogen that causes nosocomial pneumonia and other infections. Although it is recognized as an increasing threat to immunocompromised patients, the mechanism of host defense against A. baumannii infection remains poorly understood. In this study, we examined the potential role of macrophages in host defense against A. baumannii infection using in vitro macrophage culture and the mouse model of intranasal (i.n.) infection. Large numbers of A. baumannii were taken up by alveolar macrophages in vivo as early as 4 h after i.n. inoculation. By 24 h, the infection induced significant recruitment and activation (enhanced expression of CD80, CD86 and MHC-II) of macrophages into bronchoalveolar spaces. In vitro cell culture studies showed that A. baumannii were phagocytosed by J774A.1 (J774) macrophage-like cells within 10 minutes of co-incubation, and this uptake was microfilament- and microtubule-dependent. Moreover, the viability of phagocytosed bacteria dropped significantly between 24 and 48 h after co-incubation. Infection of J774 cells by A. baumannii resulted in the production of large amounts of proinflammatory cytokines and chemokines, and moderate amounts of nitric oxide (NO). Prior treatment of J774 cells with NO inhibitors significantly suppressed their bactericidal efficacy (P<0.05). Most importantly, in vivo depletion of alveolar macrophages significantly enhanced the susceptibility of mice to i.n. A. baumannii challenge (P<0.01). These results indicate that macrophages may play an important role in early host defense against A. baumannii infection through the efficient phagocytosis and killing of A. baumannii to limit initial pathogen replication and the secretion of proinflammatory cytokines and chemokines for the rapid recruitment of other innate immune cells such as neutrophils.  相似文献   

5.
There is potential for phages to prevent and control bacterial biofilms, but few studies have examined the effect of phages on the multispecies biofilms that characterize most bacterial infections. This paper reviews the mechanism of action of phages, the evidence supporting the view that phage therapy will be effective against bacterial targets and the opposite viewpoint, phage application approaches, and the comparative advantage of phage therapy in multispecies biofilms. The few reports measuring the actions of lytic phages against multispecies biofilms are also reviewed. The authors are cautiously optimistic about the application of phages against their targets when in multispecies biofilms because some lysis mechanisms do not require species specificity.  相似文献   

6.
The immergence and dissemination of multidrug-resistant strains of Staphylococcus aureus in recent years have expedited the research on the discovery of novel anti-staphylococcal agents promptly. Bacteriophages have long been showing tremendous potentialities in curing the infections caused by various pathogenic bacteria including S. aureus. Thus far, only a few virulent bacteriophages, which do not carry any toxin-encoding gene but are capable of eradicating staphylococcal infections, were reported. Based on the codon usage analysis of sixteen S. aureus phages, previously three phages were suggested to be useful as the anti-staphylococcal agents. To search for additional S. aureus phages suitable for phage therapy, relative synonymous codon usage bias has been investigated in the protein-coding genes of forty new staphylococcal phages. All phages appeared to carry A and T ending codons. Several factors such as mutational pressure, translational selection and gene length seemed to be responsible for the codon usage variation in the phages. Codon usage indeed varied phage to phage. Of the phages, phages G1, Twort, 66 and Sap-2 may be extremely lytic in nature as majority of their genes possess high translational efficiency, indicating that these phages may be employed in curing staphylococcal infections.  相似文献   

7.
Acinetobacter baumannii, one of the major Gram negative bacteria, causes nosocomial infections such as pneumonia, urinary tract infection, meningitis, etc. β-lactam-based antibiotics like penicillin are used conventionally to treat infections of A. baumannii; however, they are becoming progressively less effective as the bacterium produces diverse types of β-lactamases to inactivate the antibiotics. We have recently identified a novel β-lactamase, OXA-51 from clinical strains of A. baumannii from our hospital. In the present study, we generated the structure of OXA-51 using MODELLER9v7 and studied the interaction of OXA-51 with a number of β-lactams (penicillin, oxacillin, ceftazidime, aztreonam and imipenem) using two independent programs: GLIDE and GOLD. Based on the results of different binding parameters and number of hydrogen bonds, interaction of OXA-51 was found to be maximum with ceftazidime and lowest with imipenem. Further, molecular dynamics simulation results also support this fact. The lowest binding affinity of imipenem to OXA-51 indicates clearly that it is not efficiently cleaved by OXA-51, thus explaining its high potency against resistant A. baumannii. This finding is supported by experimental results from minimum inhibitory concentration analysis and transmission electron microscopy. It can be concluded that carbapenems (imipenem) are presently effective β-lactam antibiotics against resistant strains of A. baumannii harbouring OXA-51. The results presented here could be useful in designing more effective derivatives of carbapenem.  相似文献   

8.
鲍曼不动杆菌是医院内感染的重要病原体,其基于内在性和获得性的耐药机制,导致全球抗感染领域面临巨大挑战。目前,针对多重耐药和广泛耐药鲍曼不动杆菌引起的感染尚无有效治疗方案,本文对其可选用的治疗药物及最新进展进行综述。  相似文献   

9.
Acinetobacter baumannii is an important Gram-negative opportunistic pathogen causing nosocomial infections. The emergence of multiple-drug-resistant A. baumannii isolates has increased in recent years. Directed toward phage therapy, a lytic phage of A. baumannii, designated Abp53, was isolated from a sputum sample in this study. Abp53 has an isometric head and a contractile tail with tail fibers (belonging to Myoviridae), a latent period of about 10 min, and a burst size of approximately 150 PFU per infected cell. Abp53 could completely lyse 27% of the A. baumannii isolates tested, which were all multiple drug resistant, but not other bacteria. Mg(2+) enhanced the adsorption and productivity of, and host lysis by, Abp53. Twenty Abp53 virion proteins were visualized in SDS-polyacrylamide gel electrophoresis, with a 47-kDa protein being the predicted major capsid protein. Abp53 has a double-stranded DNA genome of 95 kb. Sequence analyses of a 10-kb region revealed 8 open reading frames. Five of the encoded proteins, including 3 tail components and 2 hypothetical proteins, were similar to proteins encoded by A. baumannii strain ACICU. ORF1176 (one of the tail components, 1,176 amino acids [aa]), which is also similar to tail protein gp21 of Klebsiella phage phiKO2, contained repeated domains similar to those within the ACICU_02717 protein of A. baumannii ACICU and gp21. These findings suggest a common ancestry and horizontal gene transfer during evolution. As phages can expand the host range by domain duplication in tail fiber proteins, repeated domains in ORF1176 might have a similar significance in Abp53.  相似文献   

10.
Biofilm formation in Acinetobacter baumannii is a common cause of nosocomial infections in humans. Clinical devices and abiotic surfaces are important sites of colonization leading to formation of biofilms. Such infections are often resistant to multiple antibiotic therapies, and hence there is need for an effective mode of control. Herein, we describe the isolation, characterization of a new lytic bacteriophage of A.?baumannii and its effect on biofilm. The phage AB7-IBB2, with a genome size of about 170?kb was identified to be of family Podoviridae as revealed by transmission electron microscopy. It had an isometric head (35?nm) and a short tail (7?nm). It lysed 19/39 (49?%) clinical isolates of A.?baumannii. Rapid adsorption (>99?% adsorbed in 4?min), a latency period of 25?min and a burst size 22?PFU/infected cell was observed. The phage could inhibit A.?baumannii biofilm formation and disrupt preformed biofilm as well. The phage has promising potential to be considered as a candidate biocontrol agent for A.?baumannii infections.  相似文献   

11.
Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.  相似文献   

12.
Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.  相似文献   

13.
Vancomycin-resistant Enterococcus faecalis (VRE) has become a significant threat in nosocomial settings. Bacteriophage (phage) therapy is frequently proposed as a potential alternative therapy for infections caused by this bacterium. To search for candidate therapeutic phages against Enterococcus faecalis infections, 30 Enterococcus faecalis phages were isolated from the environment. One of these, virulent phage phiEF24C, which has a broad host range, was selected for analysis. The plaque-forming ability of phiEF24C was virtually unaffected by differences in the clinical host strains. Furthermore, the phage had a shorter latent period and a larger burst size than ordinary tailed phages, indicating that phiEF24C has effective lytic activity against many Enterococcus faecalis strains, including VRE. Morphological and genomic analyses revealed that phiEF24C is a large myovirus (classified as family Myoviridae morphotype A1) with a linear double-stranded DNA genome of c. 143 kbp. Analyses of the N-terminal amino acid sequences of the virion proteins, together with the morphology and the genome size, speculated that phiEF24C is closely related to other myoviruses of Gram-positive bacteria that have been used experimentally or practically for therapy or prophylaxis. Considering these results, phiEF24C may be a potential candidate therapeutic phage against Enterococcus faecalis infections.  相似文献   

14.
RecA is the major enzyme involved in homologous recombination and plays a central role in SOS mutagenesis. In Acinetobacter spp., including Acinetobacter baumannii , a multidrug-resistant bacterium responsible for nosocomial infections worldwide, DNA repair responses differ in many ways from those of other bacterial species. In this work, the function of A. baumannii RecA was examined by constructing a recA mutant. Alteration of this single gene had a pleiotropic effect, showing the involvement of RecA in DNA damage repair and consequently in cellular protection against stresses induced by DNA damaging agents, several classes of antibiotics, and oxidative agents. In addition, the absence of RecA decreased survival in response to both heat shock and desiccation. Virulence assays in vitro (with macrophages) and in vivo (using a mouse model) similarly implicated RecA in the pathogenicity of A. baumannii . Thus, the data strongly suggest a protective role for RecA in the bacterium and indicate that inactivation of the protein can contribute to a combined therapeutic approach to controlling A. baumannii infections.  相似文献   

15.
The opportunistic human pathogen Acinetobacter baumannii persists in the healthcare setting because of its ability to survive exposure to various antimicrobial and sterilization agents. A. baumannii’s ability to cause multiple infection types complicates diagnosis and treatment. Rapid detection of A. baumannii infections would likely improve treatment outcomes. Recently published Acinetobacter glycoproteomic data show the prevalence of O-linked glycoproteins, suggesting the possibility for an O-glycan-based detection technology. O-glycan biosynthesis is required for protein glycosylation and capsular polysaccharide production in A. baumannii. Recent publications demonstrate key roles for protein glycosylation and capsular polysaccharide in the pathogenicity of A. baumannii. Targeted antimicrobial development against O-glycan biosynthesis may produce new effective treatment options for A. baumannii infections. Here, we discuss how the data gathered through Acinetobacter glycoproteomics can be used to develop technologies for rapid diagnosis and reveal potential antimicrobial targets. In addition, we consider the efficacy of glycoconjugate vaccine development against A. baumannii.  相似文献   

16.
Vancomycin-resistant Enterococcus faecalis (VRE) has become a significant threat in nosocomial settings. Bacteriophage (phage) therapy is frequently proposed as a potential alternative therapy for infections caused by this bacterium. To search for candidate therapeutic phages against Enterococcus faecalis infections, 30 Enterococcus faecalis phages were isolated from the environment. One of these, virulent phage φEF24C, which has a broad host range, was selected for analysis. The plaque-forming ability of φEF24C was virtually unaffected by differences in the clinical host strains. Furthermore, the phage had a shorter latent period and a larger burst size than ordinary tailed phages, indicating that φEF24C has effective lytic activity against many Enterococcus faecalis strains, including VRE. Morphological and genomic analyses revealed that φEF24C is a large myovirus (classified as family Myoviridae morphotype A1) with a linear double-stranded DNA genome of c . 143 kbp. Analyses of the N-terminal amino acid sequences of the virion proteins, together with the morphology and the genome size, speculated that φEF24C is closely related to other myoviruses of Gram-positive bacteria that have been used experimentally or practically for therapy or prophylaxis. Considering these results, φEF24C may be a potential candidate therapeutic phage against Enterococcus faecalis infections.  相似文献   

17.
鲍曼不动杆菌为非发酵糖类革兰阴性杆菌,具有强大的获得耐药性和克隆传播的能力,广泛分布于医院环境,是医院内感染的重要病原菌之一。因此,建立精准、高效的鲍曼不动杆菌基因分型技术,是开展其医院内感染流行病学研究和临床防控的重要工具。本文就近年来鲍曼不动杆菌基因分型技术的研究进展进行综述,并分析比较多种基因分型技术的原理、优点、局限性及应用范围。  相似文献   

18.
由于抗菌药物的开发周期越来越长,远远赶不上细菌耐药的发展速度,临床鲍曼不动杆菌多重耐药与泛耐药现象日益严重。因此,人们越来越关注对抗菌药物以外的抗菌物质的开发,尤其是从生存条件方面来研究抑制耐药菌活性的方法,如金、银、铜等金属离子对鲍曼不动杆菌的作用。本文主要综述铁、锌等金属离子及其螯合物对鲍曼不动杆菌的抗菌作用。铁、锌等金属离子通过与一系列酶的协同作用,调控外排泵或影响生物膜形成及其黏附性等来抑制细菌生长。此外,一些非必需金属如金、银、钯等对鲍曼不动杆菌也具有很强的毒性,有良好的抗菌和降低耐药率的效果,可作为医疗留置器械的抗菌涂层等来预防感染。  相似文献   

19.
Within-host competition between parasites is frequently invoked as a major force for parasite evolution, yet quantitative studies on its extent in an organismal group are lacking. Temperate bacteriophages are diverse and abundant parasites of bacteria, distinguished by their ability to enter a facultative dormant state in their host. Bacteria can accumulate multiple phages that may eventually abandon dormancy in response to host stress. Host resources are then converted into phage particles, whose release requires cell death. To study within-host competition between phages, I used the bacterium Escherichia coli and 11 lambdoid phages to construct single and double lysogens. Lysogenic bacterial cultures were then induced and time to host cell lysis and productivity of phages was measured. In double lysogens, this revealed strong competitive interactions as in all cases productivity of at least one phage declined. The outcome of within-host competition was often asymmetrical, and phages were found to vary hierarchically in within-host competitive ability. In double infections, the phage with the shorter lysis time determined the timing of cell lysis, which was associated with a competitive advantage when time differences were large. The results emphasize that within-host competition greatly affects phage fitness and that multiple infections should be considered an integral part of bacteriophage ecology.  相似文献   

20.
Acinetobacter baumannii is a nosocomial bacterial pathogen, and infections attributed to this species are further complicated by a remarkable ability to acquire antimicrobial resistance genes and to survive in a desiccated state. While the antibiotic resistance and biofilm formation of A. baumannii is well-documented, less is known about the virulence attributes of this organism. Recent studies reported A. baumannii strains display a motility phenotype, which appears to be partially dependent upon Type IV pili, autoinducer molecules, and the response to blue light. In this study, we wanted to determine the prevalence of this trait in genetically diverse clinical isolates, and any additional required factors, and environmental cues that regulate motility. When strains are subjected to a wide array of stress conditions, A. baumannii motility is significantly reduced. In contrast, when extracellular iron is provided or salinity is reduced, motility is significantly enhanced. We further investigated whether the genes required for the production of lipopolysaccharide (lpsB) and K1 capsule (epsA/ptk) are required for motility as demonstrated in other Gram-negative bacteria. Transposon mutagenesis resulted in reduced motility by the insertion derivatives of each of these genes. The presence of the parental allele provided in trans, in the insertion mutant background, could only restore motility in the lpsB mutant. The production of core LPS directly contributes to the motility phenotype, while capsular polysaccharide may have an indirect effect. Further, the data suggest motility is regulated by extracellular conditions, indicating that A. baumannii is actively sensing the environment and responding accordingly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号