首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
JH Lee  H Shin  S Ji  S Malhotra  M Kumar  S Ryu  S Heu 《Journal of virology》2012,86(16):8899-8900
Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not make lysogen after host infection. This is the first report on the complete genome sequence of the P. carotovorum subsp. carotovorum-targeting bacteriophage, and it will enhance our understanding of the interaction between phytopathogens and their targeting bacteriophages.  相似文献   

2.
Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the α-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH.  相似文献   

3.
The bacterium 'Dickeya solani', an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with 'Dickeya solani', the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics.  相似文献   

4.
Soft rot is the most important disease on calla lily in Poland. The isolation of the presumptive pathogen from symptomatic tubers on nutrient agar yielded bacteria with different colony morphology. Of 41 isolates collected, 10 showed pectolytic activity on crystal violet pectate medium and caused soft rot on potato slices. All pectolytic bacteria appeared to be Gram‐negative rods producing typical soft rot on inoculated leaf petioles of calla lily. Bacteria with colonies which morphologically resembled those used for inoculation were re‐isolated from diseased petioles. Their identification was based on phenotypic characters and sequence of the gene fragment coding 16S rRNA. It was found that, in addition to Pectobacterium carotovorum subsp. carotovorum, soft rot of calla lily can be caused by Pectobacterium carotovorum subsp. atrosepticum, Pseudomonas marginalis, Pseudomonas veronii and Chryseobacterium indologenes. The latter two are described for the first time as plant pathogens. The pectolytic activity of all identified bacteria, except that of P. carotovorum subsp. atrosepticum, was lower than that of P. carotovorum subsp. carotovorum, but strains of P. veronii showed a higher activity than P. marginalisand C. indologenes species.  相似文献   

5.
Pectobacterium carotovorum and Pectobacterium atrosepticum are dreadful causal agents of potato soft rot. Actually, there are no efficient bactericides used to protect potato against Pectobacterium spp. Biological control using actinobacteria could be an interesting approach to manage this disease. Thus, two hundred actinobacteria isolated from Moroccan habitats were tested for their ability to inhibit in vitro 4 environmental Pectobacterium strains and the two reference strains (P. carotovorum CFBP 5890 and P. atrosepticum CFBP 5889). Eight percent of these isolates were active against at least one of the tested pathogens and only 2% exhibited an antimicrobial activity against all tested Pectobacterium strains. Four bioactive isolates having the greatest pathogen inhibitory capabilities and classified as belonging to the genus Streptomyces species through 16S rDNA analysis were subsequently tested for their ability to reduce in vivo soft rot symptoms on potato slices of Bintje, Yukon Gold, Russet and Norland cultivars caused by the two pathogens P. carotovorum and P. atrosepticum. This test was carried out by using biomass inoculums and culture filtrate of the isolates as treatment. Among these, strain Streptomyces sp. OE7, reduced by 65–94% symptom severity caused by the two pathogens on potato slices. Streptomyces OE7 showed a potential for controlling soft rot on potato slices and could be useful in an integrated control program against potato soft rot pathogens in the objective to reduce treatments with chemical compounds.  相似文献   

6.
To identify bacteria causing soft rot and blackleg in potato in Finland, pectinolytic enterobacteria were isolated from diseased potato stems and tubers. In addition to isolates identified as Pectobacterium atrosepticum and Dickeya sp., many of the isolated strains were identified as Pectobacterium carotovorum subsp. carotovorum. Phylogenetic analysis and biochemical tests indicated that one of the isolates from potato stems resembled Pectobacterium wasabiae. Furthermore, two blackleg‐causing P. carotovorum strains recently isolated in Europe clustered with P. wasabiae, suggesting that at least some of these isolates were originally misidentified. All the other Finnish P. carotovorum isolates resembled the subsp. carotovorum type strain in biochemical tests but could be clustered into two distinct groups in the phylogenetic analysis. One of the groups mainly contained strains isolated from diseased tubers, whereas the other mainly included isolates from potato stems. In contrast to the tuber isolates, the stem isolates lacked genes in Type III secretion genes, were not able to elicit a hypersensitive response in tobacco leaves and produced only small amounts of autoinducers in the stationary phase in vitro. P. wasabiae isolate was able to cause similar amount of blackleg‐like symptoms as P. atrosepticum in a field experiment with vacuum‐infiltrated tubers, whereas both P. atrosepticum and P. carotovorum isolates reduced emergence and delayed growth more than P. wasabiae. Our findings confirm the presence of P. wasabiae in Finland and show that the Finnish P. carotovorum subsp. carotovorum isolates can be divided into two groups with specific characteristics and possibly also different ecologies.  相似文献   

7.
Yu  Ling  Wang  Shuang  Guo  Zhimin  Liu  Hongtao  Sun  Diangang  Yan  Guangmou  Hu  Dongliang  Du  Chongtao  Feng  Xin  Han  Wenyu  Gu  Jingmin  Sun  Changjiang  Lei  Liancheng 《Applied microbiology and biotechnology》2018,102(2):971-983

In recent years, after the emergence of a large number of multidrug-resistant bacteria, phages and phage-associated products for the prevention and control of bacterial disease have revealed prominent advantages as compared with antibiotics. However, bacteria are susceptible to becoming phage-resistant, thus severely limiting the application of phage therapy. In this study, Escherichia coli cells were incubated with lytic bacteriophages to obtain mutants that were resistant to the lytic phages. Then, bacteriophages against the phage-resistant variants were isolated and subsequently mixed with the original lytic phage to prepare a novel phage cocktail for bactericidal use. The data showed that our phage cocktail not only had notable bactericidal effects, including a widened host range and rapid lysis, but also decreased the generation and mutation frequency of phage-resistant strains in vitro. In addition, we tested our cocktail in a murine bacteremia model. The results suggested that compared with the single phage, fewer phage-resistant bacteria appeared during the treatment of phage cocktail, thus prolonging the usable time of the phage cocktail and improving its therapeutic effect in phage applications. Importantly, our preparation method of phage cocktail was proved to be generalizable. Because the bacteriophage against the phage-resistant strain is an ideal guard that promptly attacks potential phage resistance, this guard-killer dual-function phage cocktail provides a novel strategy for phage therapy that allows the natural ecology to be sustained.

  相似文献   

8.
The broad-host-range bacterial soft rot pathogen Pectobacterium carotovorum causes a DspE/F-dependent plant cell death on Nicotiana benthamiana within 24 h postinoculation (hpi) followed by leaf maceration within 48 hpi. P. carotovorum strains with mutations in type III secretion system (T3SS) regulatory and structural genes, including the dspE/F operon, did not cause hypersensitive response (HR)-like cell death and or leaf maceration. A strain with a mutation in the type II secretion system caused HR-like plant cell death but no maceration. P. carotovorum was unable to impede callose deposition in N. benthamiana leaves, suggesting that P. carotovorum does not suppress this basal immunity function. Within 24 hpi, there was callose deposition along leaf veins and examination showed that the pathogen cells were localized along the veins. To further examine HR-like plant cell death induced by P. carotovorum, gene expression profiles in N. benthamiana leaves inoculated with wild-type and mutant P. carotovorum and Pseudomonas syringae strains were compared. The N. benthamiana gene expression profile of leaves infiltrated with Pectobacterium carotovorum was similar to leaves infiltrated with a Pseudomonas syringae T3SS mutant. These data support a model where Pectobacterium carotovorum uses the T3SS to induce plant cell death in order to promote leaf maceration rather than to suppress plant immunity.  相似文献   

9.
Pectobacterium carotovorum (formerly Erwinia carotovora ssp. carotovora) is a phytopathogenic bacterium that causes soft rot disease, characterized by water-soaked soft decay, resulting from the action of cell wall-degrading exoenzymes secreted by the pathogen. Virulence in soft rot bacteria is regulated by environmental factors, host and bacterial chemical signals, and a network of global and gene-specific bacterial regulators. We isolated a mini-Tn5 mutant of P. carotovorum that is reduced in the production of extracellular pectate lyase, protease, polygalacturonase and cellulase. The mutant is also decreased in virulence as it macerates less host tissues than its parent and is severely impaired in multiplication in planta. The inactivated gene responsible for the reduced virulent phenotype was identified as corA. CorA, a magnesium/nickel/cobalt membrane transporter, is the primary magnesium transporter for many bacteria. Compared with the parent, the CorA(-) mutant is cobalt resistant. The mutant phenotype was confirmed in parental strain P. carotovorum by marker exchange inactivation of corA. A functional corA(+) DNA from P. carotovorum restored exoenzyme production and pathogenicity to the mutants. The P. carotovorum corA(+) clone also restored motility and cobalt sensitivity to a CorA(-) mutant of Salmonella enterica. These data indicate that CorA is required for exoenzyme production and virulence in P. carotovorum.  相似文献   

10.
Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In our study, we screened bacteria isolated from the potato rhizosphere for the ability to degrade AHLs produced by P. carotovorum subsp. carotovorum. Six isolates able to degrade AHLs were selected for further studies. According to 16S rDNA sequence analysis and fatty acid methyl ester profiling, the isolates belonged to the genera Ochrobactrum, Rhodococcus, Pseudomonas, Bacillus, and Delftia. For the genera Ochrobactrum and Delftia, for the first time AHL-degrading isolates were found. Data presented in this study revealed for the first time that Ochrobactrum sp. strain A44 showed the capacity to inactivate various synthetic AHL molecules; the substituted AHLs were inactivated with a lower efficiency than the unsubstituted AHLs. Compared with the other isolates, A44 was very effective in the degradation of AHLs produced by P. carotovorum subsp. carotovorum. It was verified by polymerase chain reaction, DNA-DNA hybridization, and a lactone ring reconstruction assay that Ochrobactrum sp. strain A44 did not possess AHL lactonase activity. AHL degradation in Ochrobactrum sp. strain A44 occurred intracellularly; it was not found in the culture supernatant. AHL-degrading activity of A44 was thermo sensitive. Experiments in planta revealed that Ochrobactrum sp. strain A44 significantly inhibited the maceration of potato tuber tissue. Since A44 did not produce antibiotics, the attenuation of the decay might be due to the quenching of quorum- sensing-regulated production of pectinolytic enzymes. The strain can potentially serve to control P. carotovorum subsp. carotovorum in potato.  相似文献   

11.
Polyamine profiles of 91 pectolytic and other plant-associated strains from 30 taxa of the Enterobacteriaceae were obtained by gradient high performance liquid chromatography (HPLC). Pectobacterium carotovorum, basonym Erwinia carotovora, contained a high amount of putrescine and less diaminopropane. Diaminopropane was absent in Pectobacterium chrysanthemi, basonym E. chrysanthemi, whereas cadaverine was present in addition to the major compound putrescine. This chemotaxonomic difference reflects the deepest phylogenetic branching point within the recently emended genus Pectobacterium which lies between the two species P. carotovorum and P. chrysanthemi. Both important soft rot pathogens are easily distinguishable from each other and from the type species of the genus Erwinia as diaminopropane is the only major polyamine compound in E. amylovora. Chemotaxonomic heterogeneity is also emerging with respect to DYE's Amylovora group proposed in an early phytopathological concept.  相似文献   

12.
Park YH  Choi C  Park EM  Kim HS  Park HJ  Bae SC  Ahn I  Kim MG  Park SR  Hwang DJ 《Plant cell reports》2012,31(10):1845-1850
Pectobacterium carotovorum subsp. carotovorum causes soft rot disease in various plants, including Chinese cabbage. The simple extracellular leucine-rich repeat (eLRR) domain proteins have been implicated in disease resistance. Rice leucine-rich repeat protein (OsLRP), a rice simple eLRR domain protein, is induced by pathogens, phytohormones, and salt. To see whether OsLRP enhances disease resistance to bacterial soft rot, OsLRP was introduced into Chinese cabbage by Agrobacterium-mediated transformation. Two independent transgenic lines over-expressing OsLRP were generated and further analyzed. Transgenic lines over-expressing OsLRP showed enhanced disease resistance to bacterial soft rot compared to non-transgenic control. Bacterial growth was retarded in transgenic lines over-expressing OsLRP compared to non-transgenic controls. We propose that OsLRP confers enhanced resistance to bacterial soft rot. Monitoring expression of defense-associated genes in transgenic lines over-expressing OsLRP, two different glucanases and Brassica rapa polygalacturonase inhibiting protein 2, PDF1 were constitutively activated in transgenic lines compared to non-transgenic control. Taken together, heterologous expression of OsLRP results in the activation of defense response and enhanced resistance to bacterial soft rot.  相似文献   

13.
Pinellia ternata , a traditional Chinese herb that has been used in China for over 1000 years, is susceptible to a soft rot disease, which may cause major loss of yield. The use of bacteria as potential antagonists against Pectobacterium carotovorum SXR1, the causal agent of the disease on P. ternata , was evaluated. Altogether, 1107 candidate bacteria were isolated from the rhizosphere and surface-sterilized plants of P. ternata . In Petri dish tests, 55 isolates inhibited the growth of strain SXR1, and 21 of these reduced the disease development on P. ternata slices by over 50%. Four selected antagonists significantly reduced the disease incidence on tissue culture seedlings, and also prevented the disease on the transplants. Agonist P-Y2-2 yielded a good prevention level of 81.9%. The four antagonists rapidly colonized the tissue culture seedlings and transplants, whereas greater populations of the antagonists (107–109 CFU g−1 fresh tissues) were observed in the seedlings and in the preinoculated transplants than in those inoculated during transplanting. The use of pathogen-free tissue culture seedlings pre-inoculated with antagonist may provide a strategy for production of P. ternata plantlets resistant to soft rot disease. This is the first report on the efficacy of biocontrol agents against pathogens on P. ternata .  相似文献   

14.
Abstract

In this study, an antagonistic yeast isolate, Wickerhamiella versatilis was considered as a promising biocontrol agent against Pectobacterium carotovorum subsp. Carotovorum (Pcc) the causal agent of soft rot disease of potato. Antagonistic yeast inhibited the growth of Pcc in vitro, and reducing the soft rot severity of infected potato tubers (cv. Diamant) under greenhouse conditions. Consequently, cellulase and pectinase hydrolytic activities in infected potato tubers with yeast?+?Pcc were decreased compared with infected tubers with Pcc. The histological characterization of treated potato tubers with antagonistic yeast W. versatilis using scanning electron microscope showed the accumulation of extracellular substances that may induce plant resistant and protects potato tubers from hydrolysis and damages. This study may introduce the possibility of using the antagonistic yeast isolate, as a biocontrol agent against soft rot of potato tubers.  相似文献   

15.
AIMS: Polish isolates of pectinolytic bacteria from the species Pectobacterium carotovorum were screened for the presence of a DNA restriction-modification (R-M) system. METHODS AND RESULTS: Eighty-nine strains of P. carotovorum were isolated from infected potato plants. Sixty-six strains belonged to P. carotovorum ssp. atrosepticum and 23 to P. carotovorum ssp. carotovorum. The presence of restriction enzyme Pca17AI, which is an isoschizomer of EcoRII endonuclease, was observed in all isolates of P. c. atrosepticum but not in P. c. carotovorum. The biochemical properties, PCR amplification, and sequences of the Pca17AI restriction endonuclease and methyltransferase genes were compared with the prototype EcoRII R-M system genes. Only when DNA isolated from cells of P. c. atrosepticum was used as a template, amplification of a 680 bp homologous to the gene coding EcoRII endonuclease. CONCLUSIONS: Endonuclease Pca17AI, having a relatively low temperature optimum, was identified. PCR amplification revealed that the nucleotide sequence of genes for EcoRII and Pca17AI R-M are different. Dcm methylation was observed in all strains of Pectobacterium and other Erwinia species tested. The sequence of a DNA fragment coding Dcm methylase in P. carotovorum was different from that of Escherichia coli. SIGNIFICANCE AND IMPACT OF THE STUDY: Pca17AI is the first psychrophilic isoschizomer of EcoRII endonuclease. The presence of specific Dcm methylation in chromosomal DNA isolated from P. carotovorum is described for the first time. A 680 bp PCR product, unique for P. c. atrosepticum strains, could serve as a molecular marker for detection of these bacteria in environmental samples.  相似文献   

16.
In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.  相似文献   

17.
Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics-based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage-based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation- and spray-based applications. Here, an irrigation-based application showed promising results. In a final proof-of-concept, a CaCl2-formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.  相似文献   

18.
【背景】马铃薯干腐病是一种由镰刀菌引起的田间和储藏期都普遍发生的病害,主要引起块茎腐烂,致使马铃薯品质和产量降低,严重影响其食用价值和经济价值。【目的】发掘有效的生防菌株以控制马铃薯干腐病,并探究其抑菌作用。【方法】从甘肃定西地区马铃薯根际土壤中分离到109株细菌,以硫色镰刀菌(Fusarium sulphureum)为靶标菌,采用平板对峙法筛选拮抗菌,并通过形态学、生理生化特征及16S r RNA基因序列分析对拮抗菌株进行鉴定。检测拮抗菌无菌发酵液对F.sulphureum菌丝生长、孢子萌发、马铃薯块茎损伤接种病斑直径、干腐病发病率及对绿豆种子发芽的影响。【结果】筛选到一株对马铃薯干腐病有较强抑制作用的菌株YL11,经鉴定其为假单胞菌属(Pseudomonas sp.)菌株。YL11菌株无菌发酵液对F.sulphureum菌丝生长、孢子萌发、马铃薯块茎病斑扩展、干腐病发病率、毒素活性均有显著抑制作用。20%无菌发酵液对F.sulphureum菌落生长的抑制率达到87.3%;75%无菌发酵液可完全抑制孢子萌发;无菌发酵液浸泡能有效抑制马铃薯干腐病病斑的扩展,14 d时对病斑扩展的抑制率达到67.1%;90 d后干腐病的发生率降低了68.4%;同时降低了F.sulphureum毒素的活性。【结论】拮抗菌株YL11能显著抑制F.sulphureum的生长,对马铃薯干腐病有较强的生物防治效果,具有潜在的应用价值。  相似文献   

19.
20.
Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号