首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The large number of snRNAs in the fission yeast Schizosaccharomyces pombe can be divided into four non-overlapping groups by immunoprecipitation with antibodies directed against mammalian snRNP proteins. 1) Of the abundant snRNAs, anti-Sm sera precipitate only the spliceosomal snRNAs U1, U2, U4, U5 and U6. Surprisingly, three Sm-sera tested distinguish between U2, U4 and U5 and U1 from S.pombe; one precipitating only U1 and two precipitating U2, U4 and U5 but not U1. 2) A group of 11 moderately abundant snRNAs are not detectably precipitated by human anti-Sm sera, but are specifically precipitated by monoclonal antibody H57 specific for the human B/B' polypeptides. From Aspergillus nidulans this antibody also precipitates at least 12 snRNAs. 3) Anti-(U3)RNP sera do not precipitate the above snRNAs, but precipitate at least 6 further snRNAs, including the homologues of U3. Both the anti-(U3)RNP sera and H57 also efficiently precipitate a number of discrete non-capped RNAs. 4) A small number of additional snRNAs are not detectably precipitated by any anti-serum tested to date, further analysis may identify antisera specific for these snRNPs. Western blots of purified snRNP proteins were used to identify the S.pombe proteins responsible for these immunoprecipitations. Several Sm-sera decorate a 16.3kD protein which may be a D protein homologue, monoclonal H57 decorates a further protein of 16kD and an anti-(U3)RNP serum decorates the homologue of the 36kD U3-specific protein, fibrillarin.  相似文献   

2.
Whole nuclear and cytoplasmic fractions from HeLa cells were analyzed in protein gel blots probed with either monoclonal anti-Sm or polyclonal anti-(U1)RNP antibodies. The cells were fractionated by a nonaqueous procedure, to minimize proteolysis and artifactual leakage of nuclear components to the cytoplasmic fraction. Unexpectedly, more reactive proteins were detected in the nucleus than shown earlier in partially purified small nuclear ribonucleoprotein particles (snRNPs). In addition, reactive polypeptides were now found in the cytoplasm. These results are discussed in reference to the possibility that the nucleus and cytoplasm of adult somatic human cells may have a more complex than anticipated set of populations of polypeptides bearing Sm or RNP antigenic determinants, including some proteins that might not be in snRNP form.  相似文献   

3.
Autoantibodies directed against the U2 small nuclear ribonucleoprotein (snRNP) have been found in the serum of a patient with scleroderma-polymyositis overlap syndrome. This specificity, called anti-(U2)-RNP, is distinct from all previously described autoantibodies, including those that precipitate related snRNPs: anti-Sm antibodies, which react with the entire set of U1, U2, U4, U5, and U6 snRNPs, and anti-(U1)RNP antibodies, which recognize only U1 snRNPs. From HeLa cell extracts, anti-(U2)RNP immunoprecipitates predominantly one 32P-labeled RNA species, identified as U2 small nuclear RNA, and six [35S]methionine-labeled protein bands, A' (Mr = 32,000), B (Mr = 28,000), D (Mr = 16,000), E (Mr = 13,000), F (Mr = 12,000), and G (Mr = 11,000). Protein blot analysis reveals that the A' protein carries (U2)RNP antigenic determinant(s) and therefore represents a polypeptide unique to the U2 snRNP; the B protein associated with U2 snRNPs may also be unique. Like U1 and the other Sm snRNPs, U2 snRNPs occupy a nuclear, non-nucleolar location and are antigenically conserved from insects to man. An antibody specific for the U2 snRNP will be useful in deciphering the function of this particle.  相似文献   

4.
Antibodies to the Sm antigen are closely associated with the rheumatic disease systemic lupus erythematosus (SLE). The Sm antigen exists in the cell as part of a ribonucleoprotein complex containing at least 10 polypeptides and five small nuclear RNA. The major immunoreactive Sm species are three polypeptides of m.w. 27,000, 26,000, and 13,000. By using an MRL/1 mouse, a strain which spontaneously produces a disease with many of the characteristics of human SLE, we have produced an anti-Sm hybridoma specific for the 13,000 m.w. Sm polypeptide. This monoclonal antibody is sufficient to allow for the rapid bulk isolation of the entire class of Sm snRNP, and can be used sequentially with an anti-(U1)RNP monoclonal antibody to subfractionate the Sm snRNP particles.  相似文献   

5.
Small nuclear ribonucleoprotein particles containing the five major nucleoplasmic snRNAs U1, U2, U4, U5 and U6 as well as two smaller sized snRNAs were purified from broad bean nuclear extracts by anti-m3G, monoclonal antibody, immunoaffinity chromatography. We have so far defined 13 polypeptides of approximate mol. wts. of 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 18.5 kd, 25 kd (double band), 30 kd, 31 kd, 35 kd, 36 kd and 54 kd. Upon fractionation of the UsnRNPs by anion exchange chromatography, essentially pure U5 snRNPs were obtained, containing the 11 kd, 11.5 kd, 12.5 kd, 16 kd, 17 kd, 17.5 kd, 35 kd and 36 kd polypeptides. These may therefore represent the common snRNP polypeptides and which may also be present in the other snRNPs. By immunoblotting studies, using anti-Sm sera and mouse monoclonal antibodies we show that the 35 kd and 36 kd proteins are immunologically related to the mammalian common B/B' proteins. The broad bean 16 kd and 17 kd proteins appear to share structural elements with the mammalian D protein. The three proteins of mol. wts. 11 kd, 11.5 kd and 12.5 kd probably represent the broad bean polypeptides E, F, and G. Cross-reactivity of proteins of mol. wts of 30 kd and 31 kd with Anti-(U1/U2)RNP antibodies suggests that they may represent the broad bean A and B" polypeptides. The 54 kd protein and the 18.5 kd protein could be candidates for the U1 specific 70 k and C polypeptides. Our results demonstrate a strong similarity between the overall structure of broad bean and mammalian snRNPs.  相似文献   

6.
The distribution of U snRNAs during mitosis was studied by indirect immunofluorescence microscopy with snRNA cap-specific anti-m3G antibodies. Whereas the snRNAs are strictly nuclear at late prophase, they become distributed in the cell plasm at metaphase and anaphase. They re-enter the newly formed nuclei of the two daughter cells at early telophase, producing speckled nuclear fluorescent patterns typical of interphase cells. While the snRNAs become concentrated at the rim of the condensing chromosomes and at interchromosomal regions at late prophase, essentially no association of the snRNAs was observed with the condensed chromosomes during metaphase and anaphase. Independent immunofluorescent studies with anti-(U1)RNP autoantibodies, which react specifically with proteins unique to the U1 snRNP species, showed the same distribution of snRNP antigens during mitosis as was observed with the snRNA-specific anti-m3G antibody. Immunoprecipitation studies with anti-(U1)RNP and anti-Sm autoantibodies, as well as protein analysis of snRNPs isolated from extracts of mitotic cells, demonstrate that the snRNAs remain associated in a specific manner with the same set of proteins during interphase and mitosis. The concept that the overall structure of the snRNPs is maintained during mitosis also applies to the coexistence of the snRNAs U4 and U6 in a single ribonucleoprotein complex. Particle sedimentation studies in sucrose gradients reveal that most of the snRNPs present in sonicates of mitotic cells do not sediment as free RNP particles, but remain associated with high molecular weight (HMW) structures other than chromatin, most probably with hnRNA/RNP.  相似文献   

7.
Characterization of U small nuclear RNA-associated proteins   总被引:25,自引:0,他引:25  
Differential immunoaffinity chromatography using a combination of autoimmune antibodies allows for the rapid bulk separation of specific small nuclear ribonucleoproteins (snRNPs). Passage of a HeLa cell extract over a column constructed of human anti-Sm autoantibodies results directly in the elution of complexes containing the small nuclear RNA species, U1, U2, U4, U5, and U6, and nine major polypeptides of molecular weight 69,000, 32,000, 27,000, 26,000, 18,500, 13,000, 11,000 doublet, and less than 10,000. Passage of crude extracts through a column bearing murine monoclonal antibodies directed against the 69,000 molecular weight (U1)RNP peptide gives an enriched population of U1 snRNP particles in the retained material. When the flowthrough material from the (U1)RNP column is passed through an anti-Sm column, the retained material is enriched in U2, U4, U5 plus U6 snRNP complex. The 69,000, 32,000, and 18,500 molecular weight polypeptides are confined to the U1 fraction while the remaining proteins are recovered in both fractions. The procedure is simple and rapid, producing complexes with a high degree of resolution and in sufficient yield to provide a ready source of snRNP complexes for functional studies.  相似文献   

8.
The spliceosomal small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/U6 and U5 share eight proteins B', B, D1, D2, D3, E, F and G which form the structural core of the snRNPs. This class of common proteins plays an essential role in the biogenesis of the snRNPs. In addition, these proteins represent the major targets for the so-called anti-Sm auto-antibodies which are diagnostic for systemic lupus erythematosus (SLE). We have characterized the proteins F and G from HeLa cells by cDNA cloning, and, thus, all human Sm protein sequences are now available for comparison. Similar to the D, B/B' and E proteins, the F and G proteins do not possess any of the known RNA binding motifs, suggesting that other types of RNA-protein interactions occur in the snRNP core. Strikingly, the eight human Sm proteins possess mutual homology in two regions, 32 and 14 amino acids long, that we term Sm motifs 1 and 2. The Sm motifs are evolutionarily highly conserved in all of the putative homologues of the human Sm proteins identified in the data base. These results suggest that the Sm proteins may have arisen from a single common ancestor. Several hypothetical proteins, mainly of plant origin, that clearly contain the conserved Sm motifs but exhibit only comparatively low overall homology to one of the human Sm proteins, were identified in the data base. This suggests that the Sm motifs may also be shared by non-spliceosomal proteins. Further, we provide experimental evidence that the Sm motifs are involved, at least in part, in Sm protein-protein interactions. Specifically, we show by co-immunoprecipitation analyses of in vitro translated B' and D3 that the Sm motifs are essential for complex formation between B' and D3. Our finding that the Sm proteins share conserved sequence motifs may help to explain the frequent occurrence in patient sera of anti-Sm antibodies that cross-react with multiple Sm proteins and may ultimately further our understanding of how the snRNPs act as auto-antigens and immunogens in SLE.  相似文献   

9.
10.
Intranuclear localization of snRNP antigens   总被引:34,自引:19,他引:15       下载免费PDF全文
  相似文献   

11.
Antibodies against naked U1RNA can be found in sera from patients with overlap syndromes of systemic lupus erythematosus (SLE) in addition to antibodies directed to the proteins of U1 ribonucleoproteins (U1RNP). We investigated the reactivity of these U1RNA specific autoantibodies with the native U1RNP particle both in vitro and inside the cell. For this purpose a method was developed to purify human autoantibodies directed to specific regions of U1RNA. The antibodies are specifically directed to either stemloop II or stemloop IV of U1RNA and do not crossreact with protein components of U1RNP. Both types of antibody are able to precipitate from cell extracts native U1snRNPs containing most, if not all, protein components. Immunofluorescence patterns indicate that the antigenic sites on the RNA, i.e. the stem of stemloop II and the loop of stemloop IV, are also available after fixation of the cells. Immunoelectron microscopy employing anti-stemloop IV antibodies and purified, complete U1snRNP particles showed that stemloop IV is located within the body of the U1RNP complex, which also comprises the Sm site and the common Sm proteins. The anti-U1RNA autoantibodies described in this paper recognize native U1RNP particles within the cell and can therefore be used as tools to study mechanisms involved in splicing of pre-mRNA.  相似文献   

12.
Small nuclear ribonucleoprotein particles (snRNPs) of the U-snRNP class from Ehrlich ascites tumor cells were purified in a one-step procedure by affinity chromatography with antibodies specific for 2,2,7-trimethylguanosine (m23.2.7G), which is part of the 5'-terminal cap structure of snRNAs U1-U5. Antibody-bound snRNPs are desorbed from the affinity column by elution with excess nucleoside m23.2.7G; this guarantees maintenance of their native structure. The snRNPs U1, U2, U4, U5 and U6 can be recovered quantitatively from nuclear extracts by this procedure. Co-isolation of U6 snRNP must be due to interactions between this and other snRNPs, as anti-m23.2.7G antibodies do not react with deproteinized U6 snRNA. We have so far defined nine proteins of approximate mol. wts. 10 000, 12 000, 13 000, 16 000, 21 000, 28 000, 32 000, 34 000 and 75 000. Purified snRNPs react with anti-(U1)RNP and with anti-Sm antisera from patients with mixed connective tissue disease and from MRL/l mice. As determined by the protein blotting technique, six of the snRNP polypeptides, characterized by apparent mol. wts. 13 000, 16 000, 21 000, 28 000, 34 000 and 75 000, bear antigenic determinants for one or the other of the above autoantibody classes. This suggests strongly that the U-snRNPs produced by the procedure described here are indeed representative of the snRNPs in the cell. With highly purified snRNPs available, investigation of possible enzymic functions of the particles may now be undertaken.  相似文献   

13.
It has been shown that small nuclear RNA (snRNA) species U1, U2, U4, U5, and U6 are found in the nucleus in the form of small nuclear ribonucleoprotein particles (snRNPs), and that anti-Sm antibodies react with snRNP polypeptides, which are associated with all five snRNAs. We report here a novel intranuclear complex, denoted “Sm cluster,” detected by immunostaining with monoclonal anti-Sm antibodies in HeLa cells.  相似文献   

14.
The human spliceosomal Sm B/B' proteins are essential for the biogenesis of the snRNP particles. B/B' proteins contain several clusters of the PPPPGM/IR sequence, which occurs within the C-terminus of Sm B/B'. This sequence is very similar to the PPPPPGHR sequence of the cytoplasmic tail of the CD2 receptor and closely resembles the class II of SH3 ligands, suggesting a similarly important role. We report that a monoclonal antibody (3E10) against the PPPPPGHR sequence recognizes spliceosomal Sm B/B' proteins. Proteins that are specifically immunoprecipitated by 3E10 include Sm B, B', D1, D2, D3, E, F, and G. However, unlike Y12 and other anti-Sm immunoprecipitates, 3E10 immunoprecipitates appear to lack the U1 snRNP-specific proteins A and C and U snRNAs. These findings indicate that 3E10 recognizes a subset of Sm protein core and suggest the presence of snRNA-free Sm protein complex(es) in vivo. We propose that the epitope binding for 3E10 may become unaccessible upon interactions of Sm proteins and their subsequent incorporation into the core particles. The Sm proline-rich sequences may have an important role in mediating protein-protein interactions necessary for the proper snRNP core assembly or function, or both. To our knowledge, 3E10 is the first well characterized mAb specific for a subclass of polyproline-arg motif recognizing Sm B/B' and CD2 proteins. 3E10 antibody can be used to further characterize the nature of protein components in the snRNA-free Sm subcore protein complex(es) that are formed during the snRNP core assembly steps.  相似文献   

15.
A monoclonal antibody specific for snRNPs U1 and U2   总被引:7,自引:0,他引:7  
A monoclonal antibody (D-5) is described which selectively precipitates snRNPs U1 and U2. The antibody was derived from a mouse immunized with extracts from chick embryonic nuclei. By immunoblotting on either total proteins from purified snRNPs U1-U6, U2-U6 or U1 only, we could demonstrate that the monoclonal antibody cross-reacts with the U1 RNP specific polypeptide A and the U2 RNP specific polypeptide B", thereby establishing that the two snRNP proteins share at least one epitope. D-5 precipitates snRNPs U1 and U2 from a variety of species, including man, chicken, mouse, rat kangaroo and Xenopus laevis. It will thus be a useful tool for studying structure function relationships of the two snRNP species in different cell systems.  相似文献   

16.
The U snRNP associated B'/B polypeptides are primary targets of Sm autoantibodies in patients with systemic lupus erythematosus. We have bacterially expressed a Sm-B'/B autoantigen from Raji cells as a fusion with the anthranilate synthase protein from Escherichia coli. The recombinant Sm-B'/B fusion displays comparable immunologic reactivity to the native protein when tested with both monoclonal and polyclonal antibodies. To map Sm-B'/B epitopes, we constructed a series of 12 anthranilate synthase fusions spanning different regions of Sm-B'/B and tested such fusions on immunoblots against a panel of characterized sera. In this manner, we have identified six epitopes, five of which overlap the proline-rich carboxyl-terminus of the protein. Some of these epitopes appear to be conformational. The human sera tested can be divided, according to the epitopes they recognize, into six groups. Finally, we have shown that anti-Sm recognition of the (U1)RNP-specific A protein is attributable to cross-reactivity between the Sm-B'/B and A autoantigens.  相似文献   

17.
Autoantibodies to ribonucleoprotein particles containing U2 small nuclear RNA.   总被引:29,自引:3,他引:26  
Autoantibodies exclusively precipitating U1 and U2 small nuclear ribonucleoprotein (snRNP) particles [anti-(U1,U2)RNP] were detected in sera from four patients with autoimmune disorders. When tested by immunoblotting, these sera recognized up to four different protein antigens in purified mixtures of U1-U6 RNP particles. With purified antibody fractions eluted from individual antigen bands on nitrocellulose blots, each anti-(U1,U2)RNP serum precipitated U2 RNP by virtue of the recognition of a U2 RNP-specific B" antigen (mol. wt. 28 500). Antibodies to the U2 RNP-specific A' protein (mol. wt. 31 000) were found in only one serum. The B" antigen differs slightly in mol. wt. from the U1-U6 RNA-associated B/B' antigens and can be separated from this doublet by two-dimensional gel electrophoresis, due to its more acidic pI. In immunoprecipitation assays, the purified anti-B" antibody specificity also reacts with U1 RNPs which is due to cross-reactivity of the antibody with the U1 RNA-specific A protein, as demonstrated by immunoblotting using proteins from isolated U1 RNPs as antigenic material. Thus the A antigen not only bears unique antigenic sites for anti-A antibodies contained in anti-(U1)RNP sera, it also shares epitopes with the U2 RNP-specific B" antigen.  相似文献   

18.
D L Black  B Chabot  J A Steitz 《Cell》1985,42(3):737-750
Two different experimental approaches have provided evidence that both U2 and U1 snRNPs function in pre-mRNA splicing. When the U2 snRNPs in a nuclear extract are selectively degraded using ribonuclease H and either of two deoxyoligonucleotides complementary to U2 RNA, splicing activity is abolished. Mixing an extract in which U2 has been degraded with one in which U1 has been degraded recovers activity. Use of anti-(U2)RNP autoantibodies demonstrates that U2 snRNPs associate with the precursor RNA during in vitro splicing. At 60 min, but not at 0 min, into the reaction intron fragments that include the branch-point sequence are immunoprecipitated by anti-(U2)RNP. At all times, U1 snRNPs bind the 5' splice site of the pre-mRNA. Possible interactions of the U2 snRNP with the U1 snRNP and with the pre-mRNA during splicing are considered.  相似文献   

19.
Monospecific antibodies directed against several U small nuclear ribonucleoprotein (U snRNP) particle proteins were affinity purified from a patient's anti-(U1,U2)RNP serum. These were used to demonstrate that: (i) proteins equivalent to the mammalian U2 snRNP-specific A' and B" proteins are present in Xenopus laevis oocytes; (ii) both proteins A' and B" have the same structural requirements for binding to U2 snRNA; (iii) proteins B, B' and D have the same structural requirement for binding to U2 snRNA; (iv) using very high specific activity RNA probes it is possible to detect a fraction of either U1 or U2 snRNA precipitable by antibodies directed against proteins specific for the other U snRNP, indicating an interaction between U1 and U2 snRNPs. The structural requirements of this interaction were studied for the U2 snRNP. All changes made to U2 snRNA or snRNP structure resulted in loss of the interaction with U1 snRNP.  相似文献   

20.
The Sm proteins B/B', D1, D2, D3, E, F, and G are components of the small nuclear ribonucleoproteins U1, U2, U4/U6, and U5 that are essential for the splicing of pre-mRNAs in eukaryotes. D1 and D3 are among the most common antigens recognized by anti-Sm autoantibodies, an autoantibody population found exclusively in patients afflicted with systemic lupus erythematosus. Here we demonstrate by protein sequencing and mass spectrometry that all arginines in the C-terminal arginine-glycine (RG) dipeptide repeats of the human Sm proteins D1 and D3, isolated from HeLa small nuclear ribonucleoproteins, contain symmetrical dimethylarginines (sDMAs), a posttranslational modification thus far only identified in the myelin basic protein. The further finding that human D1 individually overexpressed in baculovirus-infected insect cells contains asymmetrical dimethylarginines suggests that the symmetrical dimethylation of the RG repeats in D1 and D3 is dependent on the assembly status of D1 and D3. In antibody binding studies, 10 of 11 anti-Sm patient sera tested, as well as the monoclonal antibody Y12, reacted with a chemically synthesized C-terminal peptide of D1 containing sDMA, but not with peptides containing asymmetrically modified or nonmodified arginines. These results thus demonstrate that the sDMA-modified C terminus of D1 forms a major linear epitope for anti-Sm autoantibodies and Y12 and further suggest that posttranslational modifications of Sm proteins play a role in the etiology of systemic lupus erythematosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号