首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

2.
A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N',N'-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation.  相似文献   

3.
A new method for the quantification and characterization of manganese-oxidizing activity by spent culture medium of Leptothrix discophora SS-1 was developed. It is based on the formation of the dye Wurster blue from N,N,N′,N′-Tetramethyl-p-phenylenediamine by oxidized manganese generated in the spent medium. The kinetic parameters thus obtained agreed well with data obtained with other methods. It was also possible to demonstrate iron oxidation by spent culture medium. The kinetics of the process and inhibition by enzyme poisons suggest that iron oxidation is enzymatically catalyzed. Probably two different factors are involved in manganese and iron oxidation.  相似文献   

4.
Manganese oxidation by Leptothrix discophora.   总被引:13,自引:2,他引:11       下载免费PDF全文
Cells of Leptothrix discophora SS1 released Mn2+-oxidizing factors into the medium during growth in batch culture. Manganese was optimally oxidized when the medium was buffered with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) at pH 7.5. Manganese-oxidizing activity in the culture medium in which this strain had been grown previously was sensitive to heat, phosphate, Tris, NaN3, HgCl2 NaCl, sodium dodecyl sulfate, and pronase; 0.5 mol of O2 was consumed per mol of MnO2 formed. During Mn2+ oxidation, protons were liberated. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, two protein-containing bands were detected in the spent culture medium. One band had an apparent molecular weight of 110,000 and was predominant in Mn2+-oxidizing activity. The second product (Mr 85,000) was only detected in some cases and probably represents a proteolytic breakdown moiety of the 110,000-Mr protein. The Mn2+-oxidizing factors were associated with the MnO2 aggregates that had been formed in spent culture medium. After solubilization of this MnO2 with ascorbate, Mn2+-oxidizing activity could be recovered.  相似文献   

5.
Leptothrix discophora SP-6 was isolated from the outflow reservoir of an artificial iron seep. Its sheathforming phenotype was maintained by slow growth in a mineral salts-vitamin-pyruvate medium under minimal aeration at 20 to 25°C. A sheathless variant, SP-6(sl), was isolated from smooth colonies that appeared on spread plates after rapid growth of SP-6 in well-aerated cultures. SP-6 and SP-6(sl) are closely related but not identical to the previously studied sheathless strain SS-1 (ATCC 43182). Increasing Mn2+ concentrations in the growth medium of SP-6 increased the phase density of the sheath, indicating increased Mn oxide deposition in the sheath. Electron microscopy of cultures grown without added Mn2+ revealed that the sheath consisted of a well-defined inner layer, 30 to 100 nm thick, and a diffuse outer capsular layer of variable thickness. Mn oxides were identified in the sheath by their characteristic ultrastructure, electron density, and X-ray-dispersive energy spectra. In heavily encrusted sheaths, the Mn oxides were evenly distributed in both layers of the sheath. Sheathed cells retained more Mn-oxidizing activity than did sheathless cells after washing with distilled, deionized water; the sheath retained some of its activity after an EDTA-lysozyme-detergent treatment which removed the cells. An ultrafiltration-dialysis procedure significantly increased the recovery of activity from spent media of SP-6 over that reported previously for SS-1 (L.F. Adams and W.C. Ghiorse, J. Bacteriol. 169:1279-1285, 1987). A 108-kDa Mn-oxidizing protein was identified in concentrated spent media of SP-6 and SP-6(sl), and the activity of the concentrates showed stability in detergents comparable to that of SS-1 and patterns of heat inactivation and chemical inhibition similar to those of SS-1.  相似文献   

6.
A heterotrophic bacterium, isolated from an acidic stream in a disused pyrite mine which contained copious growths of "acid streamers," displayed characteristics which differentiated it from previously described mesophilic acidophiles. The isolate was obligately acidophilic, with a pH range of 2.0 to 4.4 and an optimum pH of 3.0. The bacterium was unable to fix carbon dioxide but oxidized ferrous iron, although at a slower rate than either Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Elemental sulfur and manganese(II) were not oxidized. In liquid media, the isolate produced macroscopic streamerlike growths. Microscopic examination revealed that the bacterium formed long (greater than 100 microns) filaments which tended to disintegrate during later growth stages, producing single, motile cells and small filaments. The isolate did not appear to utilize the energy from ferrous iron oxidation. Both iron (ferrous or ferric) and an organic substrate were necessary to promote growth. The isolate displayed a lower tolerance to heavy metals than other iron-oxidizing acidophiles, and growth was inhibited by exposure to light. There was evidence of extracellular sheath production by the isolate. In this and some other respects, the isolate resembles members of the Sphaerotilus-Leptothrix group of filamentous bacteria. The guanine-plus-cytosine content of the isolate was 62 mol%, which is less than that recorded for Sphaerotilus-Leptothrix spp. and greater than those of L. ferrooxidans and most T. ferrooxidans isolates.  相似文献   

7.
At Titas, Bangladesh, two aquifers of different arsenic concentrations and redox conditions were investigated to link variations in geochemistry to in situ bacterial diversity characterized by T-RFLP (terminal restriction fragment length polymorphism) and clone library analysis. While the shallow aquifer was characterized by reduced gray sediments with a higher share of easily mobilized sedimentary arsenic (2.6% was easily mobilized from 18 mg/kg of total arsenic available in sediments) and higher aqueous arsenic concentrations of 120 ± 6 μg/L (45% arsenite), the deeper aquifer consisted of brown oxidized sediments with lower aqueous arsenic concentrations, predominantly as arsenate (60 ± 6 μg/L; 3% arsenite) and a higher share of tightly bound arsenic (only 0.6% of 53 mg/kg total sorbed arsenic was easily mobilized). The bacterial communities of both aquifers were dominated by putative aerobic or denitrifying populations of Pseudomonas, Elizabethkingia and Pantoea. The shallow aquifer was more diverse in bacterial populations of aerobic, facultative and anaerobic bacteria, an observation which may be correlated to more variable geochemical conditions resulting in arsenic mobilization and re-sorption. The deeper aquifer showed higher abundance of aerobic bacterial populations including the presence of iron-oxidizing Sideroxydans possibly of importance for the sorption of arsenic on oxidized iron hydroxides. From the arsenic-affected shallow aquifer, As(III) oxidizing isolates of Comamonas and Microbacterium were obtained, which may provide information on suitable conditions for arsenic immobilization useful for future bioremediation efforts. Supplemental materials are available for this article. Go to the publisher’s online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

8.
A heterotrophic bacterium, isolated from an acidic stream in a disused pyrite mine which contained copious growths of "acid streamers," displayed characteristics which differentiated it from previously described mesophilic acidophiles. The isolate was obligately acidophilic, with a pH range of 2.0 to 4.4 and an optimum pH of 3.0. The bacterium was unable to fix carbon dioxide but oxidized ferrous iron, although at a slower rate than either Thiobacillus ferrooxidans or Leptospirillum ferrooxidans. Elemental sulfur and manganese(II) were not oxidized. In liquid media, the isolate produced macroscopic streamerlike growths. Microscopic examination revealed that the bacterium formed long (greater than 100 microns) filaments which tended to disintegrate during later growth stages, producing single, motile cells and small filaments. The isolate did not appear to utilize the energy from ferrous iron oxidation. Both iron (ferrous or ferric) and an organic substrate were necessary to promote growth. The isolate displayed a lower tolerance to heavy metals than other iron-oxidizing acidophiles, and growth was inhibited by exposure to light. There was evidence of extracellular sheath production by the isolate. In this and some other respects, the isolate resembles members of the Sphaerotilus-Leptothrix group of filamentous bacteria. The guanine-plus-cytosine content of the isolate was 62 mol%, which is less than that recorded for Sphaerotilus-Leptothrix spp. and greater than those of L. ferrooxidans and most T. ferrooxidans isolates.  相似文献   

9.
Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizing Thiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotroph Thiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.  相似文献   

10.
Kálmán L  LoBrutto R  Williams JC  Allen JP 《Biochemistry》2006,45(46):13869-13874
The binding and oxidation of ferrous iron were studied in wild-type reaction centers and in mutants that have been modified to be both highly oxidizing and able to bind manganese [Thielges et al. (2005) Biochemistry 44, 7389-7394]. After illumination of wild-type reaction centers, steady-state optical spectroscopy showed that the oxidized bacteriochlorophyll dimer, P+, could oxidize iron but only as a second-order reaction at iron concentrations above 100 microM. In the modified reaction centers, P+ was reduced by iron in the presence of sodium bicarbonate with dissociation constants of approximately 1 microM for two mutants with different metal-binding sites. Transient optical spectroscopy showed that P+ was rapidly reduced with first-order rates of 170 and 275 s-1 for the two mutants. The dependence of the amplitude of this rate on the iron concentration yielded a dissociation constant of approximately 1 microM for both mutants, in agreement with the steady-state determination. The oxidation of bound iron by P+ was confirmed by the observation of a light-induced EPR signal centered at g values of 2.2 and 4.3 and attributed to high-spin Fe3+. Bicarbonate was required at pH 7 for low dissociation constants for both iron and manganese binding. The similarity between iron and manganese binding in these mutants provides insight into general properties of metal-binding sites in proteins.  相似文献   

11.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, >or=50 microg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24 h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

12.
Increasing evidence supports a role of cellular iron in the initiation and development of atherosclerosis. We and others reported earlier that iron-laden macrophages are associated with LDL oxidation, angiogenesis, nitric oxide production and apoptosis in atherosclerotic processes. Here we have further studied perturbed iron metabolism in macrophages, their interaction with lipoproteins and the origin of iron accumulation in human atheroma. In both early and advanced human atheroma lesions, hemoglobin and ferritin accumulation correlated with the macrophage-rich areas. Iron uptake into macrophages, via transferrin receptors or scavenger receptor-mediated erythrophagocytosis, increased cellular iron and accelerated ferritin synthesis at both mRNA and protein levels. The binding activity of iron regulatory proteins was enhanced by desferrioxamine (DFO) and decreased by hemin and iron compounds. Iron-laden macrophages exocytosed both iron and ferritin into the culture medium. Exposure to oxidized low-density lipoprotein (oxLDL, ≥50?μg/mL) resulted in <20% apoptosis of iron-laden human macrophages, but cells remained impermeable after a 24?h period and an increased excretion of ferritin could be observed by immunostaining techniques. Exposure to high-density lipoprotein (HDL) significantly decreased ferritin excretion from these cells. We conclude: (i) erythrophagocytosis and hemoglobin catabolism by macrophages contribute to ferritin accumulation in human atherosclerotic lesions and; (ii) iron uptake into macrophages leads to increased synthesis and secretion of ferritin; (iii) oxidized LDL and HDL have different effects on these processes.  相似文献   

13.
In previous studies, three different strains (BrG1, BrG2, and BrG3) of ferrous iron-oxidizing, nitrate-reducing bacteria were obtained from freshwater sediments. All three strains were facultative anaerobes and utilized a variety of organic substrates and molecular hydrogen with nitrate as electron acceptor. In this study, analyses of 16S rDNA sequences showed that strain BrG1 was affiliated with the genus Acidovorax, strain BrG2 with the genus Aquabacterium, and strain BrG3 with the genus Thermomonas. Previously, bacteria similar to these three strains were detected with molecular techniques in MPN dilution series for ferrous iron-oxidizing, nitrate-reducing bacteria inoculated with different freshwater sediment samples. In the present study, further molecular analyses of these MPN cultures indicated that the ability to oxidize ferrous iron with nitrate is widespread amongst the Proteobacteria and may also be found among the Gram-positive bacteria with high GC content of DNA. Nitrate-reducing bacteria oxidized ferrous iron to poorly crystallized ferrihydrite that was suitable as an electron acceptor for ferric iron-reducing bacteria. Biologically produced ferrihydrite and synthetically produced ferrihydrite were both well suited as electron acceptors in MPN dilution cultures. Repeated anaerobic cycling of iron was shown in a coculture of ferrous iron-oxidizing bacteria and the ferric iron-reducing bacterium Geobacter bremensis. The results indicate that iron can be cycled between its oxidation states +II and +III by microbial activities in anoxic sediments.  相似文献   

14.
Supernatant fluid from Leptothrix discophora SS-1 cultures possessed high Mn2+-ozidizing activity. Studies of temperature and pH optima, chemical inhibition, and protease sensitivity suggested that the activity may be enzymatic. Kinetic studies of unconcentrated supernatant fluid indicated an apparent Km of 7 microM Mn2+ in the 1 to 200 microM Mn2+ range. The greatest Vmax value observed was 1.4 nmol of Mn2+ oxidized min-1 micrograms of protein-1 in unconcentrated samples. When the supernatant fluid was concentrated on DEAE-cellulose and the activity was eluted with MgSO4, an Mn2+-oxidizing protein was detected in the concentrate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mn2+-oxidizing protein appeared to have a molecular weight of 110,000 in 10% polyacrylamide gels and of 100,000 in 8% gels. Periodic acid-Schiff base staining of overloaded polyacrylamide gels showed that the DEAE-cellulose concentrate contained abundant high-molecular-weight polysaccharides; concurrent staining of the Mn2+-oxidizing band suggested that it too contained carbohydrate components. Isolation of the protein was achieved by subjecting the DEAE-cellulose concentrate to Sephacryl gel filtration in the presence of 1% sodium dodecyl sulfate, followed by preparative electrophoresis and reverse-polarity elution. However, these procedures resulted in loss of a large proportion of the activity, which precluded recovery of the protein in significant quality.  相似文献   

15.
Abstract

This study aimed to investigate the ability of pure and consortia of indigenous iron-oxidizing bacteria to enhance the dissolution of trace metals from Cu and Zn-bearing ore. Three bacterial strains Acidithiobacillus ferrooxidans strain WG101, Leptospirillum ferriphilum strain WG102, Leptospirillum ferrooxidans strain WG103 isolated from Baiyin copper mine, China were used in this study. The biotechnological potential of these indigenous isolates was evaluated both in pure and in consortia to extract cobalt, chromium, and lead from the copper and zinc bearing ore. The sulfur and iron-oxidizing bacterial isolate Acidithiobacillus ferrooxidans strain WG101 exhibited efficient dissolution compared to sole iron-oxidizing Leptospirillum ferriphilum strain WG102, and Leptospirillum ferrooxidans strain WG103. Initial medium pH, pulp density, and temperature were studied as influential parameters in bioleaching carried out by bacterial consortia. The achieved optimum conditions were; initial pH of 1.5, 10% of pulp density, and temperature 30?°C with 68.7?±?3.9% cobalt, 56.6?±?3.9% chromium, and 36?±?3.7% lead recovery. Analytical study of oxidation-reduction potential and pH fluctuation were observed during this whole process that shows the metal dissolution efficiency of bacterial consortia. Alterations in spectral bands of processed residues were reported through FTIR analysis compared with control ore sample. Mössbauer spectroscopy analysis showed the influence of bacterial consortia on iron speciation in bioleached samples. The findings confirm that the indigenous acidophilic iron-oxidizing bacterial strains are highly effective in the dissolution of trace elements present in ore samples. This study not only supports the notion that indigenous bacterial strains are highly effectual in metal dissolution but provides the basic vital conditions to upscale the bioleaching technique for metals dissolution.  相似文献   

16.
The present study was aimed at determining whether microorganisms mediate iron oxide deposition in a shallow bay (Iron Bay) on the still volcanically active island of Palaea Kameni, Santorini, Greece, north of Crete in the Aegean Sea. The results of in situ experiments showed that iron oxide deposition in this marine environment occurs at an exceptionally high rate. It was also found that deposition in the central part of the bay proceeded within specific vertical zones in the water column, showing that the bay may be regarded as a stratified system. Using light and scanning electron microscopic methods, including electron probe microanalysis, it was shown that deposition (binding and oxidation) of Fe(II) was mediated by bacteriological processes, which differed in intensity depending on their specific location in the bay. The most intensive iron oxidations and depositions were found in the hot volcanic springs at the toe of the bay, where rates more than 60 times those found in freshwater iron-oxidizing environments were measured. Bacteria that excreted extracellular slime (EPS), which apparently catalysed the process and itself became encrusted with tiny globules of hydrated iron(III) oxide, were responsible for this extremly high rate of iron deposition. The same process of oxidation catalysed by bacterial EPS was also responsible for iron oxide deposition in the main oxidation zone in the central part of the bay. Thus, precipitation of Fe(II) in Iron Bay is not, as was previously assumed, a purely chemical, Eh- and pH-dependent process, but results from the interaction of water chemistry with a high level of bacterial activity, especially surface reactions on bacterial excretion products.  相似文献   

17.
When grown on iron-salt medium supplemented with the bisulfite ion, Leptospirillum ferrooxidans was much more sensitive to the ion than was Thiobacillus ferrooxidans. The causes of the sensitivity of L. ferrooxidans to the bisulfite ion were studied. The bisulfite ion completely inhibited the iron-oxidizing activities of L. ferrooxidans and T. ferrooxidans at 0.02 and 0.2 mM, respectively. A trapping reagent for the bisulfite ion, formaldehyde, completely reversed the inhibition. The treatment of intact cells with 1.0 mM bisulfite ion for 1 h and washing the bisulfite ion from the cells had no harmful effects on the iron-oxidizing activity of T. ferrooxidans. However, the treatment of L. ferrooxidans with 0.1 mM bisulfite ion for 1 h completely destroyed the iron-oxidizing activity. T. ferrooxidans had sulfite:ferric ion oxidoreductase activity. In contrast, a quite low level of sulfite:ferric ion oxidoreductase activity was found in L. ferrooxidans, suggesting that it is much more difficult for L. ferrooxidans to oxidize the bisulfite ion to the less harmful sulfate than it is for T. ferrooxidans. These results suggest that the sensitivity of L. ferrooxidans to the bisulfite ion is due to a lack of an active sulfite:ferric ion oxidoreductase and the sensitivity of its iron oxidase to bisulfite ion.  相似文献   

18.
The oxidation of ferrous iron and elemental sulfur by Thiobacillus ferrooxidans that was absorbed and unabsorbed onto the surface of sulfur prills was studied. Unadsorbed sulfur-grown cells oxidized ferrous iron at a rate that was 3 to 7 times slower than that of ferrous iron-grown cells, but sulfur-grown cells were able to reach the oxidation rate of the ferrous iron-adapted cells after only 1.5 generations in a medium containing ferrous iron. Bacteria that were adsorbed to sulfur prills oxidized ferrous iron at a rate similar to that of unadsorbed sulfur-grown bacteria. They also showed the enhancement of ferrous iron oxidation activity in the presence of ferrous iron, even though sulfur continued to be available to the bacteria in this case. An increase in the level of rusticyanin together with the enhancement of the ferrous iron oxidation rate were observed in both sulfur-adsorbed and unadsorbed cells. On the other hand, sulfur oxidation by the adsorbed bacteria was not affected by the presence of ferrous iron in the medium. When bacteria that were adsorbed to sulfur prills were grown at a higher pH (ca. 2.5) in the presence of ferrous iron, they rapidly lost both ferrous iron and sulfur oxidation capacities and became inactive, apparently because of the deposition of a jarosite-like precipitate onto the surface to which they were attached.  相似文献   

19.
Iron overload is involved in several pathological conditions, including Friedreich ataxia, a disease caused by decreased expression of the mitochondrial protein frataxin. In a previous study, we identified 14 proteins selectively oxidized in yeast cells lacking Yfh1, the yeast frataxin homolog. Most of these were magnesium-binding proteins. Decreased Mn-SOD activity, oxidative damage to CuZn-SOD, and increased levels of chelatable iron were also observed in this model. This study explores the relationship between low SOD activity, the presence of chelatable iron, and protein damage. We observed that addition of copper and manganese to the culture medium restored SOD activity and prevented both oxidative damage and inactivation of magnesium-binding proteins. This protection was compartment specific: recovery of mitochondrial enzymes required the addition of manganese, whereas cytosolic enzymes were recovered by adding copper. Copper treatment also decreased Δyfh1 sensitivity to menadione. Finally, a Δsod1 mutant showed high levels of chelatable iron and inactivation of magnesium-binding enzymes. These results suggest that reduced superoxide dismutase activity contributes to the toxic effects of iron overloading. This would also apply to pathologies involving iron accumulation.  相似文献   

20.
The superoxide dismutase produced by Streptococcus mutans OMZ176 during aerobic growth in a chemically defined medium (modified FMC) that was treated with Chelex 100 (to lower trace metal contamination) and supplemented with high purity manganese was purified (162-fold) by heat treatment, ammonium sulfate precipitation, and chromatofocusing chromatography. The superoxide dismutase produced during aerobic growth in the same medium, but without manganese and supplemented with high purity iron, was similarly purified (220-fold). The molecular masses of each holoenzyme were approximately 43,000 with a subunit mass of 20,700, indicating that the enzymes were dimers of two equally sized subunits. The superoxide dismutase from manganese-grown cells was a manganese enzyme (MnSOD) containing 1.2 atoms of manganese and 0.25 atoms of iron/subunit. The superoxide dismutase from iron-grown cells was an iron enzyme (FeSOD) containing 0.07 atoms of manganese and 0.78 atoms of iron/subunit. The amino acid compositions of the MnSOD and the FeSOD were virtually identical, and their amino-terminal sequences were identical through the first 22 amino acids. Dialysis of the FeSOD with o-phenanthroline and sodium ascorbate generated aposuperoxide dismutase with 94% loss of activity; subsequent dialysis of apoenzyme with either manganese sulfate or ferrous sulfate reconstituted activity (recoveries of 37 and 30%, respectively). Electrophoretic determination of cytoplasmic radioiron distribution indicated that (during aerobic growth) manganese prevented insertion of iron into superoxide dismutase, although the iron levels of at least two other cytoplasmic fractions were not altered by manganese. Therefore, S. mutans used the same aposuperoxide dismutase to form either FeSOD or MnSOD, depending upon which metal was available in the culture medium. Such "cambialistic" enzymes (those capable of making a cofactor substitution) may represent a previously unrecognized family of superoxide dismutases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号