首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Synopsis Selected aspects of the reproduction and development ofSebastes and other rockfishes are reviewed in the context of piscine viviparity. Among the eight subfamilies of the Scorpaenidae, viviparity is confined to the subfamily Sebastinae; gestation is lumenal and the embryos usually develop to term within the egg envelope. Transitional states from oviparity to viviparity are evident in different species within the family. A scenario for the evolutionary origin of viviparity in rockfishes is derived from an analysis of scorpaeniform reproductive biology. Although viviparity is best developed in the genusSebastes, it is still in a primitive, unspecialized state. Rockfish viviparity is essentially lecithotrophic, i.e. embryonic nutrition is dependent on the energy reserves laid down during oogenesis. In other groups of viviparous fishes, lecithotrophy has been shown to be better suited energetically to seasonally unpredictable habitats, whereas matrotrophy requires a predictable food supply. During the evolution of an essentially primitive form of lecithotrophic viviparity in rockfishes, the advantages of high fecundity associated with oviparity were retained while an enormous increase in the survival rate of the developing embryos was acquired. The basic lecithotrophic pattern of oviparous development was not changed since it offered selective advantages both in terms of energetics and as a basis for retaining a large brood size.  相似文献   

2.
J. A. Virgl    F. Messier 《Journal of Zoology》1992,228(3):461-477
We quantified seasonal variation in body composition and morphology of adult muskrats ( Ondatra zibethicus ) inhabiting freshwater marsh environments in central Saskatchewan, Canada. The study areas were characterized by long and cold winters extending over six months during which muskrats were restricted to foraging under ice. A total of 162 adult muskrats were collected during nine sampling periods across the year. The large accumulation of fat reserves (16% of body mass) during winter and the concurrent decline in protein mass suggested a reduced maintenance requirement associated with the presence of energy-rich food resources. Dietary fibre content increased significantly during mid-summer and was manifested by changes in gut morphology. Mobilization of fat reserves during summer months by both sexes reflected high energetic demands for reproduction. Males depleted fat reserves soon after spring break-up, while near-exhaustion of fat reserves in females occurred 4–6 weeks later, during lactation. Pregnant females contained significantly greater fat and protein reserves compared to non-pregnant and lactating females. The dynamics of body reserves in muskrats should be viewed as an integral part of the sex-specific life-history traits of this important herbivore species of marsh environments.  相似文献   

3.
Body reserves play a major role in several aspects of vertebrate biology. Accurate identification and quantification of body reserves constitute a useful contribution to the better understanding of the energetic costs of reproduction and the implication of food availability in life history traits of organisms. In this study, lipid content in fat bodies, liver and muscle of the viperine snake (Natrix maura) were measured along an active season. Samples were collected monthly from a natural population of the Ebro Delta Natural Park (NE Spain). This methodology pointed out that lipids stored in fat bodies were the main energetic source during reproduction. In addition, lipids stored in liver appeared to be critical for vitellogenesis, while lipids stored in muscle turned out to be a supplementary energetic resource to fuel reproductive effort. Relationships between changes in body reserves and prey availability in canals of the Ebro Delta were also considered. In males, lipid reserves presented a positive correlation with food availability. On the contrary, lipid reserves in female viperine snakes decreased during vitellogenesis even though food availability increased in this period, which suggests a quick transfer of body lipids to clutch. In April, when rice fields of the Ebro Delta were dry and aquatic prey was scarce for viperine snakes, males and females presented a lower lipid content in fat bodies, liver and muscle than they did in other months, showing a clear link between prey availability and body reserves during food shortage. Thus, patterns of variation in fat levels indicated that Natrix maura is a capital breeder since it acquires resources in advance and stores them until they are invested during the reproductive period. Nevertheless, the shortage in April forces Natrix maura to turn into a facultative income breeder to fuel vitellogenesis. Finally, fat reserves in body components were compared with an estimate of body condition calculated by the residuals from the regression of body mass on body length. In male viperine snakes, the estimate of body condition was correlated with fat levels, revealing that this index is useful to measure condition in living individuals. On the contrary, body condition in females was not correlated with fat levels, which suggests that it is not appropriate to infer condition in female viperine snakes since it depends on the reproductive status of the individuals.  相似文献   

4.
Summary

Key factors governing polar ocean ecosystems are low temperatures and a pronounced seasonal variability of ice cover, light regime and primary production. Depending on their ecological niche and trophic position, zooplankton species at high latitudes have developed a variety of reproductive strategies and energetic adaptations to cope with these extreme environmental conditions. Life-cycle strategies of the herbivorous copepods and euphausiids, which make up the major portion of polar zooplankton biomass, include seasonal vertical migration, dormancy (diapause, quiescence) and the accumulation of energy reserves. These lipid stores help to buffer the pulsed seasonal food supply, and they play an important role in fueling reproduction independent of phytoplankton. Only a smaller fraction of the lipid reserves accumulated during spring and summer are usually catabolized for metabolic maintenance during the food-limited dark season. These deposits are retained until the end of winter and allow early egg production and spawning prior to—or coinciding with—the onset of vernal primary production. It enables the new generation to make full use of the short productive season for growth and development to reach viable overwintering stages. The Antarctic krill Euphausia superba is an exception since it uses its depot lipids for metabolic maintenance during the dark season. It therefore relies on external resources (Primary production) for reproductive processes, resulting in a later spawning period as compared to the other euphausiids. Another important component of the herbivorous Antarctic zooplankton, the salps, have developed a very different reproductive strategy. They are able to switch from sexual reproduction to asexual budding (metagenesis), which allows extreme multiplication rates under favourable feeding conditions. Due to these successful adaptations, herbivores are able to build up huge stocks, in spite of the short productive period. Omnivorous and carnivorous zooplankton species, e.g., amphipods or chaetognaths, are not much constrained by the seasonality problem, but experience a more constant food supply. They show a tendency towards K strategies with a prolonged reproductive period, reduced egg numbers and increasing parental care. However, they do not exhibit such typical “polar adaptations” as developed by the herbivorous species.  相似文献   

5.
Weithoff G 《Oecologia》2007,153(2):303-308
According to resource allocation theory, animals face a trade off between the allocation of resources into reproduction and into individual growth/maintenance. This trade off is reinforced when food conditions decline. It is well established in biological research that many animals increase their life span when food is in suboptimal supply for growth and/or reproduction. Such a situation of reduced food availability is called dietary restriction. An increase in life span under dietary restricted conditions is seen as a strategy to tolerate periods of food shortage so that the animals can start reproduction again when food is in greater supply. In this study, the effect of dietary restriction on life span and reproduction in two rotifer species, Cephalodella sp. and Elosa worallii, was investigated using life table experiments. The food concentration under dietary restricted conditions was below the threshold for population growth. It was (1) tested whether the rotifers start reproduction again after food replenishment, and (2) estimated whether the time scale of dietary restricted conditions is relevant for the persistence of a population in the field. Only E. worallii responded to dietary restriction with an increase in life span at the expense of reproduction. After replenishment of food, E. worallii started to reproduce again within 1 day. With an increase in the duration of dietary restricted conditions of up to 15 days, which is longer than the median life span of E. worallii under food saturation, the life span increased and the life time reproduction decreased. These results suggest that in a temporally (or spatially) variable environment, some rotifer populations can persist even during long periods of severe food deprivation.  相似文献   

6.
Mammals that live in seasonal environments may adjust their reproductive cycles to cope with fluctuations in food availability. Because lemurs in Madagascar experience highly seasonal variation in food availability, we examined the effects of fluctuating food availability on body condition and reproduction in one of the larger living species, Verreaux's sifaka (Propithecus verreauxi verreauxi), in the Kirindy Forest of western Madagascar. Seven years of demographic data were combined with an intensive study of 25 individuals over the course of 18 months. In contrast to other populations of Verreaux's sifaka, females were found to have greater body mass than males. Both male and female sifaka exhibited significant losses of body mass and fat during the dry season. Females were more likely to give birth and successfully wean an infant when they had higher body mass during the mating season. They mated during the periods of high and declining food availability, gave birth during the lean season, and then timed mid/late lactation with the period of increasing food availability. Thus, we conclude that sifaka follow the "classic" reproductive strategy (sensu van Schaik and van Noordwijk [Journal of Zoology (London) 206:533-549, 1985]).  相似文献   

7.
In some neotropical environments, fishes often experience periods of poor food supply, especially due to extreme fluctuations in rainfall regime. The fish species that experience periods of drought such as the traíra Hoplias malabaricus (Bloch 1794), may stand up to long-term food deprivation. In this study, experiments were performed in order to determine the dynamic of utilization of endogenous reserves in this species during starvation. Adult traíra were both fasted for 30–240 days and re-fed for 30 days following 90 and 240 days of fasting. Glycogen and perivisceral fat were primary energy substrates consumed. During the first 30 days, fish consumed hepatic and muscular glycogen, without exhausting these reserves, and used lipids from perivisceral fat. Hepatic lipids were an important energy source during the first 60 days of starvation and perivisceral fat were consumed gradually, being exhausted after 180 days. Protein mobilization was noticeable after 60 days of fasting, and became the major energy source as the lipid reserves were decreased (between 90 and 180 days). Following the longest periods of food deprivation, fish had utilized hepatic glycogen again. Fish re-fed for 30 days after 90 and 240 days of fasting were able to recover hepatic glycogen stores, but not the other energy reserves.  相似文献   

8.
Food availability and predation risk can have drastic impacts on animal behaviour and populations. The tradeoff between foraging and predator avoidance is crucial for animal survival and will strongly affect individual body mass, since large fat reserves are beneficial to reduce starvation but may increase predation risk. However, two‐factor experiments simultaneously investigating the interactive effects of food and predation risk, are still rare. We studied the effects of food supplementation and natural predation risk imposed by pygmy owls Glaucidium passerinum on the abundance and fat reserves of tit species in boreal forests of north Europe, from January to March in 2012 and in 2013. Food supplementation increased the number of individuals present in a given forest patch, whereas the level of predation risk had no clear impact on the abundance of tit species. The stronger impact of food supply respect to predation risk could be the consequence of the harsh winter conditions in north Europe, with constant below‐zero temperatures and only few (5–7 h) daylight hours available for foraging. Predation risk did not have obvious effects on tit abundance but influenced food consumption and, together with food supplementation, affected the deposition of subcutaneous fat in great tits Parus major. High owl predation risk had detrimental effects on body fat reserves, which may reduce over‐winter survival, but the costs imposed by pygmy owl risk were compensated when food was supplemented. The starvation–predation tradeoff faced by great tits in winter may thus be mediated through variation in body fat reserves. In small species living in harsh environment, this tradeoff appeared thus to be biased towards avoidance of starvation, at the cost of increasing predation risk.  相似文献   

9.
D. N. Reznick  B. Braun 《Oecologia》1987,73(3):401-413
Summary We argue, based on reviewed literature covering reptiles, amphibians, birds, and fish, that fat storage may represent a life history adaptation because it enables an organism to shift in time when resources are allocated to reproduction. We applied these arguments to fat and population cycles in three populations of the mosquito fish, Gambusia affinis. For males, there appeared to be a constant size at maturation during the reproductive season. Mature males became scarce late in the summer. At the same time, immature males delayed maturity and attained much larger sizes; they matured in large numbers in the fall. The amount of stored fat tended to be equal for immature and mature males at all times except in the late summer. In the August samples, when mature males were relatively rare, they also had the lowest level of fat reserves. It appears that the older generation of mature males did not store fat and did not overwinter. At the same time, immature males registered a two to three fold increase in fat reserves. These differences in fat content between mature and immature males disappeared by September, probably because of the recruitment of a new generation of mature males. The reserves were gradually utilized during the winter. Females reproduced from the late spring through mid- to late-summer. They stopped reproducing in the late summer, when there was ample time to produce an additional litter of young. There was an inverse relationship between resources devoted to reproduction and fat reserves. As reproductive allotment decreased in the late summer, fat reserves increased. The magnitude of the change in fat reserves was similar to that displayed by males. The reserves were depleted over the winter. Significant reserves remained at the beginning of the reproductive season the following spring. Reproducing females utilized the remaining reserves significantly more rapidly than non-reproducing females. An analysis of resource availability revealed an overall decrease in food availability in the late summer, coincident with the increase in fat reserves. These cycles are therefore not attributable to changes in resource availability. They instead indicate a change in how resources are allocated by the fish. The trends in the data indicate that fat reserves are used to shift investment in reproduction from the late summer to the following spring. In males, deferring maturity, rather than maturing in August, allows them to store the necessary reserves to survive the winter so that they can mate the following spring. In females, a subset of the fat reserves is intended for producing the first clutch of eggs the following spring. The female pattern corresponds to those reported for a diversity of organisms. The possible advantages of shifting reproductive effort from the fall to the following spring include higher fecundity and higher offspring fitness. The limitations of the methodology and potential directions for future research are discussed.  相似文献   

10.
Abstract.
  • 1 The relative influences of temperature and availability of food on reproduction, survival and growth of all developmental stages of two carabid beetle species are discussed with special reference to the suggested relationship between availability of food, size of egg production and survival of adults from one breeding season to the next.
  • 2 Temperature as well as food supply influence the length of larval growth and adult body size. Beetles grown at low temperatures and low amounts of food are smaller than those grown at higher temperature and with more food.
  • 3 The number of eggs laid per female was correlated with the amount of food gathered. There was no inverse relationship (trade-off) between reproductive output and survival in the field until the next breeding season.
  • 4 In 1980 no significant relationship was found between winter mortality and the amounts of food gathered by beetles in the period after reproduction and before winter diapause. However, in 1981 in C. melanocephalus a lower number of starved beetles survived the winter than the fed ones and‘field’beetles.
  • 5 Only in the first part of the feeding activity period in autumn can enough food be gathered by C.melunocephalus for successful hibernation. In the second part of this period there is not enough food to build up the fat reserves needed to survive the winter.
  • 6 Difference in population fluctuations of both species are discussed in relation to their life histories.
  相似文献   

11.
Summary Seasonal patterns of lipid reserves and lipid classes of dominant zooplankton in a hyper-eutrophic lake were examined in relation to algal food resources. Triacylglycerol was the principle lipid energy reserve in all five species examined. During the height of the yearlyAphanizomenon flos-aquae bloom, lipid levels of the principle herbivores (Daphnia pulex andLeptodiaptomus sicilis) and an omnivore (Diacyclops bicuspidatus thomasi), were at their lowest concentration, suggesting that this cyanobacterium is nutritionally inadequate. As the cyanobacterial bloom began to collapse, bacterial numbers increased rapidly. The increase in bacterial numbers coincided with a large increase in areal lipid energy reserves ofDiaphanosoma leuchtenbergianum andChydorus sphaericus. Examination of seasonal patterns in the biomass of different algal species suggested thatRhodomonas minuta andCryptomonas erosa played a key role in nutrition, lipid deposition, and reproduction ofD. pulex andL. sicilis.  相似文献   

12.
Egg size was measured at different rates of egg laying in three polyphagous carabid species, known to be useful predators of cereal aphids; the small Bembidion lampros Herbst and the medium-sized Pterostichus cupreus L. and P. melanarius Illiger. Variations in fecundity, as well as the ability of the medium-sized species to also build up fat reserves, were obtained when beetles were subjected to different dietary regimes consisting of aphids, or foods with a lower or higher protein content. Egg size was found to be dependent on the rate of egg laying within a species. A diet of cereal aphids appeared to be adequate for egg production in these polyphagous carabids, but female P. cupreus were unable to build up fat reserves when they ingested aphids contaminated with the aphicide pirimicarb. Beetles were able to devote resources to more and larger eggs (B. lampros), or to larger eggs and/or fat reserves (P. melanarius/P. cupreus) when given access to a carbohydrate-rich food with low protein content. The highest rate of egg laying was obtained when female P. cupreus and P. melanarius were given a more varied diet at frequent intervals; including regular shifts between unsprayed aphids, carbohydrate-rich food and protein-rich maggots. Within the varied diet treatment a negative relationship was obtained between egg size and egg number among similar-sized individuals of P. cupreus and P. melanarius; females producing the largest number also laid the smallest eggs. Egg size affected larval survival, since first instars hatching from large eggs were found to survive longer than those hatching from small eggs. The influence of differences in food intake on reproduction, maintenance metabolism, and survival of fieldinhabiting carabids is discussed.  相似文献   

13.
During severe weather, Redshanks suffer the heaviest mortality amongst all the shorebird species wintering around the North Sea coasts of the British Isles. An earlier study had suggested that this resulted from a failure to accumulate sufficient body fat reserves before mid-winter. Detailed field studies in northeast England between 1993 and 1995 of seasonal changes in body mass, and in estimated lean and fat masses, of two races of Redshank, both of which winter in the same estuary, were accompanied by similar studies of small numbers held in captivity with unlimited food. After differences in body size were allowed for, there were no differences in body composition and its seasonal pattern of change in birds of the Icelandic and British races. Body mass changes in wild birds paralleled those in captives between November and March, and mid-winter levels were not limited by food supply; indeed they were slightly higher in a winter with lower prey densities. It is concluded that Redshanks regulate body mass and, indirectly, fat reserves at levels set by a trade-off between the risks of predation and starvation. Unlike most other shorebird species, they take very small prey in relation to their body size and hence must feed for long periods during each tidal cycle to achieve their daily energy intake needs. Thus they have little scope to extend their feeding time during severe weather, which also forces them to feed on ice-free exposed coastal habitats where wind chill cannot be avoided. Both factors lead to more rapid depletion of fat reserves than in other species which have higher energy intake rates or lower total daily requirements.  相似文献   

14.
To investigate for the first time the relationship between contrasting patterns of seasonal changes of the environment and activity, body mass and reproduction for small nocturnal primates in nature, we compared a population of golden brown mouse lemur (Microcebus ravelobensis) in a dry deciduous forest of northwestern Madagascar and of the brown mouse lemur (Microcebus rufus) in an evergreen rain forest of eastern Madagascar. Both species live under similar photoperiodic conditions. Golden brown mouse lemurs (GBML) were active during the whole period (May to December) irrespective of changing environmental conditions. In contrast, a part of the population of brown mouse lemurs (BML) showed prolonged seasonal torpor, related to body mass during periods of short day length and low ambient temperatures. Differences between species might be due to differences in ambient temperature and food supply. Body weight and tail thickness (adipose tissue reserve) did not show prominent differences between short and long photoperiods in GBML, whereas both differ significantly in BML, suggesting species-specific differences in the photoperiodically driven control of metabolism. Both species showed a seasonal reproduction. The rate of growth and size of the testes were similar and preceded estrous onset in both species suggesting a photoperiodic control of reproduction in males. The estrous onset in females occurred earlier in GBML than in BML. Estrous females were observed over at least 4 months in the former, but in only 1 month in the latter species. Intraspecific variation of estrous onset in GBML may be explained by body mass. Interspecific variation of female reproduction indicates species-specific differences in the control of reproduction. Thus, environmentally related differences in annual rhythms between closely related small nocturnal lemurs emerged that allow them to cope with contrasting patterns of seasonal changes in their habitats.  相似文献   

15.
Relatively little is known about the life cycles of ascidians in temperate seas. Here, we investigated the biological cycle of the colonial ascidian Didemnum fulgens, a dominant species in some shallow localities of the NW Mediterranean Sea. Growth rates and frequencies of fission/fusion events were calculated over a period of 13 months, and the reproductive cycle determined after 32 months of observation. For analyses of reproduction, zooids were dissected in the laboratory and classified into five reproductive categories; these data were used to calculate a maturity index. For growth analyses, underwater photographs of marked colonies were used to estimate the surface area of D. fulgens colonies, calculate monthly growth rates, and document fusion and fission events. Clear seasonal patterns in reproduction and growth were observed, with distinct periods of investment into each function. Gonad maturation started in winter and larval release occurred in early summer, just before maximal sea temperatures were reached. After reproducing, colonies shrank and aestivated during the warmer summer months. Growth occurred during the cooler months, with maximal and minimal growth rates observed in winter and summer, respectively. Fusions and fissions occurred year‐round, although fissions were more frequent in fall (coincident with high growth rates) and fusions in spring (coincident with reproduction). These results add to the mounting evidence that ascidian life cycles in temperate seas are characterized by a trade‐off between investment in reproduction and growth, triggered by seasonal temperature shifts and constrained by resource availability during summer.  相似文献   

16.
Using field and laboratory observations and experiments over 3 years, I investigated whether reproductive trade-offs shape individual life histories in two natural populations of the water strider, Aquarius remigis, in which univoltine and bivoltine life cycles coexist. Both later eclosion dates and food shortages, even after adult eclosion, induced diapause in females, thus deferring reproduction to the following spring. Adult body size was positively affected by food availability during juvenile development. Higher food levels also increased the reproductive output of females, but not their longevity or oviposition period. When compared to spring breeders (univoltine life cycle), direct (summer) breeders (bivoltine life cycle) experienced reduced lifetime egg numbers and longevity, as well as reduced survivorship of their second-summer-generation offspring; these reproductive costs offset, at least in part, the advantage in non-decreasing populations of having two generations per year. Fecundity was correlated with body size, and among summer-generation females direct breeders were larger than non-breeders. The time remaining before the onset of winter and/or the time since adult eclosion augmented cumulative energy uptake, and consequently the lipid reserves and winter survival probability of non-breeding (diapausing) summer adults approaching hibernation. Overwintered spring reproductives died at faster rates than non-reproductive summer individuals despite greater food availability in spring, indicating a mortality cost of reproduction. Body length correlated with absolute and not with proportional lipid content but showed no consistent relationship with survivorship in the field. These results are in agreement with current theory on the evolution of insect voltinism patterns, and further indicate high degrees of life history flexibility (phenotypic plasticity) in the study populations in response to variable environmental factors (notably photoperiod and food availability). This may be related to their location in a geographic transition zone from uni- to bivoltine life cycles.  相似文献   

17.
The arctic fox (Alopex lagopus) is a medium-sized predator of the high Arctic experiencing extreme seasonal fluctuations in food availability, photoperiod and temperature. In this study, the plasma leptin, ghrelin and growth hormone (GH) concentrations of male arctic foxes were determined during a food deprivation period of 13 days and the subsequent recovery in November and May. Leptin, ghrelin and GH were present in arctic fox plasma in amounts comparable to other carnivores. The plasma leptin concentrations did not react to food deprivation unlike in humans and rodents. However, the leptin levels increased during re-feeding as an indicator of increasing energy reserves. The relatively high ghrelin–leptin ratio, decrease in the plasma ghrelin concentration, an increase in the circulating GH concentrations and the observed negative correlation between plasma ghrelin and free fatty acid levels during fasting suggest that these hormones take part in the weight-regulation and energy metabolism of this species by increasing fat utilisation during food deprivation. The results strengthen the hypothesis that the actions of these weight-regulatory hormones are species–specific and depend on seasonality and the life history of the animals.Abbreviations FFA free fatty acid - GH growth hormone - RMR resting metabolic rate Communicated by G. Heldmaier  相似文献   

18.
The seasonal cycles of zooplankton were determined for 18 consecutive months in a sewage-enriched lake in northern Canada and were related to algal availability and utilization, food consumption, temperature and the density of predators. Most of the common species (Daphnia pulex, Daphnia middenorffiana, Keratella cochlearis, Keratella quadrata, Polyarthra vulgaris) increased in abundance in May and June, reached a mid-summer maximum, and declined sharply in the fall. Phytoplankton densities increased sharply in May, peaked early in June and gradually decreased through the summer and fall. Since the quantity of algae in the guts remained constant during this period, algal availability and utilization had no direct impact on the seasonal cycles of any species. Furthermore, the amount of ingested material in D. pulex and D. middendorffiana was similar regardless of time of year, implying that the total quantity of food in the environment did not restrict development. Although temperature was the most important factor influencing variations in the densities of all species, predation by Cyclops spp. probably had little effect on the population dynamics of the fauna.  相似文献   

19.
Life‐history theory predicts trade‐offs between reproductive and survival traits such that different strategies or environmental constraints may yield comparable lifetime reproductive success among conspecifics. Food availability is one of the most important environmental factors shaping developmental processes. It notably affects key life‐history components such as reproduction and survival prospect. We investigated whether food resource availability could also operate as an ultimate driver of life‐history strategy variation between species. During 13 years, we marked and recaptured young and adult sibling mouse‐eared bats (Myotis myotis and Myotis blythii) at sympatric colonial sites. We tested whether distinct, species‐specific trophic niches and food availability patterns may drive interspecific differences in key life‐history components such as age at first reproduction and survival. We took advantage of a quasi‐experimental setting in which prey availability for the two species varies between years (pulse vs. nonpulse resource years), modeling mark‐recapture data for demographic comparisons. Prey availability dictated both adult survival and age at first reproduction. The bat species facing a more abundant and predictable food supply early in the season started its reproductive life earlier and showed a lower adult survival probability than the species subjected to more limited and less predictable food supply, while lifetime reproductive success was comparable in both species. The observed life‐history trade‐off indicates that temporal patterns in food availability can drive evolutionary divergence in life‐history strategies among sympatric sibling species.  相似文献   

20.
Many mammals coincide their reproductive activities with factors such as ambient temperature, rainfall, and food availability. In primates that invest immediate food intake into reproduction, the periods of maximum fruit production often coincide with the peak of lactation (to maximize maternal survival) or the occurrence of weaning (to maximize infant survival). This study investigates the relationship between reproductive periods and the availability of ripe fruit in the habitat of a population of wild squirrel monkeys (Saimiri collinsi) in Amazonian Brazil. We combine data from several years (2002–2003; 2011–2015) during which we followed the monkeys and quantified the occurrence of matings, gestations, births, and the number of lactating females. We also collected rainfall and plant phenological data for 24 months. Our results confirm that reproductive events are highly seasonal in S. collinsi. The period of weaning corresponded to the peak in the abundance of ripe fruits consumed by the monkeys. This indicates that the period of infant nutritional independence is optimally timed to coincide with periods of greater food production in this habitat. We suggest that seasonal breeding in these primates does not necessarily reduce maternal energetic stress, but likely improves infant survivorship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号