首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-1 receptor antagonist (IL-1ra) is a newly described member of the IL-1 family, isolated from supernatants of Ig stimulated monocytes, that binds competitively to IL-1 receptors without stimulating target cells (1–3). Also epithelial cells produce IL-1ra in a form which lacks a secretory signal sequence (4).Here we have compared the biosynthesis and secretion of IL-1ra in monocytes and keratinocytes. Our data show that monocytes produce two molecular forms of IL-1ra, of 18 Kd and 23 Kd respectively, which differ in the degree of glycosylation. Both forms are secreted via the classical endoplasmic reticulum (ER)-Golgi secretory pathway. By contrast keratinocytes produce IL-1ra in a molecular form of 20 Kd, which is not N-glycosylated: 20 Kd IL-1ra is detectable in supernatants of keratinocytes, although in small amounts. The presence of IL-1ra in keratinocytes cultures fluids is not inhibited by Brefeldin A (BFA), suggesting a possible secretion through the leaderless secretory pathway.  相似文献   

2.
The objective of these experiments was to evaluate the production of IL-1ra, a specific receptor antagonist of IL-1, by human in vitro-derived macrophages, a model for differentiated macrophages. IL-1ra protein levels in supernatants and lysates of cultured cells were determined by a specific ELISA. Relative steady-state IL-1ra mRNA levels were measured using a specific cDNA probe. Human monocytes were differentiated by 6 days culture in either medium or granulocyte-macrophage colony-stimulating factor (GM-CSF), after which the effects of subsequent LPS and/or GM-CSF on the production of IL-1ra were evaluated. In vitro-derived macrophages cultured in medium for 6 days constitutively produced IL-1ra protein during the 24-h period of the 7th day in culture. The constitutive production of IL-1ra by medium-aged cells correlated with low steady-state IL-1ra mRNA levels determined over this same time period. In contrast, cells cultured for 6 days in GM-CSF synthesized significantly increased levels of IL-1ra protein during the 7th day in culture but the secreted levels remained unchanged. Cells differentiated in GM-CSF displayed enhanced steady-state levels of IL-1ra mRNA in comparison with cells aged in medium. Stimulation of in vitro-derived macrophages aged for 6 days in medium or in GM-CSF, with LPS or adherent IgG, did not result in increased levels of IL-1ra protein production in comparison with non-LPS stimulated cells. The IL-1ra protein detected in the supernatants of cells differentiated in GM-CSF was biologically active in the IL-1-augmented murine thymocyte proliferation assay. By Western blot analysis, the IL-1ra protein in the in vitro-derived macrophage supernatants was predominantly the 22- to 24-kDa glycosylated species, whereas the lysates contained additional lower molecular weight forms. These results suggest that as monocytes differentiate in vitro into macrophages, they constitutively produce IL-1ra protein and that this production is enhanced by the continuous presence of GM-CSF.  相似文献   

3.
Release of IL-1 from mononuclear phagocytes   总被引:15,自引:0,他引:15  
IL-1 alpha and -beta are 31- and 34-kDa cytokines produced by stimulated monocytes, macrophages, and a variety of other cells. These proteins are thought to function primarily as intercellular mediators and can be detected in plasma and the supernatants of cultured cells; however, IL-1 alpha and -beta contain no identifiable signal peptides and are not secreted via the classical secretory pathway. To understand the mechanism of IL-1 release, we have analyzed IL-1 production by LPS-stimulated mononuclear cells. IL-1 was quantified by bioassay, immunoprecipitation, and ELISA. Of these techniques, only immunoprecipitation permitted the quantitative detection of intracellular pro-IL-1. Both the full-length pro-forms and proteolytically processed mature forms of IL-1 were detected in culture supernatants; however, for macrophages the released material represented less than 5% of the total IL-1 alpha and -beta synthesized. Freshly isolated human monocytes released a higher fraction of their total IL-1 (up to 22%): however, monocytes cultured in vitro for 24 h showed very little fractional release, similar to macrophages. Nonspecific release of intracellular contents was determined by measurement of release of lactate dehydrogenase activity and was found to parallel IL-1 release. In fact the higher release of IL-1 from freshly cultured human monocytes correlated also with an increase in the release of lactate dehydrogenase. We conclude that, in cultured LPS-stimulated monocytic cells, IL-1 is not released via a novel secretory pathway, but exits the cell via a nonspecific pathway, most likely as a consequence of cellular injury.  相似文献   

4.
Summary The pathway of interleukin 1 (IL-1) secretion from the cell remains unclear. IL-1β is the major form produced by human monocytes, and is synthesized as a precursor of 35kDa which is processed to the extracellular biologically active 17kDa form. We have examined the intracellular localization of IL-1β in lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes, by immunocytochemistry and immunoprecipitation of subcellular fractions. LPS treatment slightly damaged the cells. Unstimulated cells showed very little immunolabelling. In contrast, there was heavy immunolabelling on LPS stimulated cells. Immunolabelling occured within the cytoplasm, nucleus and mitochondria. There was no immunolabelling on the membranous secretory organelles and the plasma membrane. Blebs of cytoplasm budding from the cell surface were immunolabelled, suggesting an alternative route of secretion of IL-1β from the cell. Immunoprecipitation studies confirmed these results.  相似文献   

5.
Interleukin 1 (IL-1) is a major soluble mediator of inflammation. Two human IL-1 genes, alpha and beta, have been isolated, which encode polypeptides with only 20-30% amino acid sequence homology. Unlike most secreted proteins, the two cytokines do not have a signal sequence, an unexpected finding in view of their biological role. Here we show that IL-1 beta is actively secreted by activated human monocytes via a pathway of secretion different from the classical endoplasmic reticulum--Golgi route. Drugs which block the intracellular transport of IL-6, of tumour necrosis factor alpha and of other secretory proteins do not inhibit secretion of IL-1 beta. Secretion of IL-1 beta is blocked by methylamine, low temperature or serum free medium, and is increased by raising the culture temperature to 42 degrees C or by the presence of calcium ionophores, brefeldin A, monensin, dinitrophenol or carbonyl cyanide chlorophenylhydrazone. IL-1 beta is contained in part within intracellular vesicles which protect it from protease digestion. In U937 cells large amounts of IL-1 beta are made but none is secreted. In these cells IL-1 beta is not found in the vesicular fraction, and all the protein is accessible to protease digestion. This suggests that intracellular vesicles that contain IL-1 beta are part of the protein secretory pathway. We conclude that IL-1 beta is released by activated monocytes via a novel mechanism of secretion which may involve translocation of intracellular membranes and is increased by stress conditions.  相似文献   

6.
We have performed pulse-chase experiments to investigate the secretion and processing of interleukin 1 (IL-1) by human peripheral blood monocytes. Polyclonal antisera generated against either recombinant IL-1 alpha (p15) or IL-1 beta (p17) could distinguish the two isoelectric forms in lysates and supernatants of lipopolysaccharide-activated monocytes. In agreement with previous results, no processed IL-1 (alpha or beta) is detected in cell lysates. Both the 31-kDa precursor and 17-kDa mature forms of IL-1 were present, however, in the culture media indicating that processing is not required for secretion. The relative amounts of the secreted 31- and 17-kDa forms of IL-1 remain constant with time throughout each experiment; in addition, 31-kDa IL-1 added to monocyte cultures is not processed to the mature 17-kDa form. Precursor IL-1 beta is however, processed to 17 kDa by monocyte extracts. Therefore, the maturation and secretion of IL-1 are intimately coordinated processes. The kinetics of IL-1 secretion are unique in comparison with other secreted proteins; release of both IL-1 alpha and IL-1 beta is delayed following synthesis, and large pools of precursor IL-1 accumulate intracellularly. The intracellular half-lives of IL-1 alpha and IL-1 beta are 15 and 2.5 h, respectively. This discrepancy in half-lives is a reflection of the different kinetics with which IL-1 alpha and IL-1 beta are secreted. IL-1 beta is released continuously beginning 2 h after synthesis, whereas the secretion of IL-1 alpha is delayed for an additional 10 h. The distinct kinetics of secretion demonstrated for IL-1 alpha and IL-1 beta suggest that the release of each pI species of IL-1 is controlled by a selective mechanism(s).  相似文献   

7.
Monocytes accumulate in the epidermis and along the dermo-epidermal junction in several different inflammatory skin diseases. To determine whether human epidermal keratinocytes elaborate a specific chemotaxin responsible for the accumulation of monocytes at these anatomic sites, monocyte chemotactic activity in conditioned 16-h cultured keratinocyte supernatants were assayed using human peripheral blood monocytes as the target cell. Dilutional analysis revealed directed monocyte migration in IFN-gamma-treated (100 U/ml) keratinocyte supernatants (80% maximal FMLP response) which was 10-fold more than IFN-gamma itself or untreated keratinocyte activity alone. Gel filtration chromatography revealed that this activity eluted just ahead of a 12.5-kDa molecular mass marker. Blocking studies demonstrated that a rabbit polyclonal antibody to monocyte chemotaxis and activating factor (MCAF) inhibited all monocyte chemotaxis by greater than 80%. Keratinocytes were metabolically labeled with 35S-cysteine/methionine, and after 16 h incubation the supernatants immunoprecipitated with the same anti-MCAF antibody. MCAF was detected as a protein doublet of 12 and 9 kDa only in IFN-gamma-treated (100 U/ml) keratinocyte supernatants. Incubation with IFN-gamma and TNF-alpha (250 U/ml) in combination resulted in increased production of MCAF protein. By Northern blot analysis, MCAF mRNA was constitutively expressed in keratinocytes and upregulated only in the presence of IFN-gamma. TNF-alpha, IL-1 beta, transforming growth factor-beta and phorbol esters had no positive or negative influence on MCAF mRNA. These studies demonstrate that biologically active MCAF is elaborated by human epidermal keratinocytes upon activation by IFN-gamma, a cytokine also required for the induction of adherence between monocytes and keratinocytes. Keratinocyte-derived MCAF is likely to be important in the regulation of cutaneous monocyte trafficking and may also be responsible for the recruitment of Langerhans cells and dermal dendrocytes, which share many phenotypic features with monocytes/macrophages, to their anatomic locations in skin.  相似文献   

8.
Cytokines and other soluble factors released by tumor cells play an important role in modulating immune cells to favor tumor development. Monocyte differentiation into macrophages or dendritic cells (DCs) with specific phenotypes is deeply affected by tumor signals and understanding this context is paramount to prevent and propose new therapeutic possibilities. Hence, we developed a study to better describe the modulatory effects of leukemia and lymphoma cell products on human monocytes and monocyte-derived DCs secretion of cytokines such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and IL-12. Except with the promyelocytic leukemia cell supernatants (HL-60), the other two tumor supernatants (chronic myeloid leukemia, K562 and Burkitt lymphoma, DAUDI) increased both TNF-α and IL-1β production by monocytes and monocytes undergoing differentiation. This effect was neither explained by alterations of cell number in culture nor by the high amount of vascular endothelial growth factor (VEGF) present in the tumor supernatants. Moreover, all supernatants used were able to induce drastic reduction of IL-12 secretion by cells induced to activation, suggesting a negative interference with Th1 antitumoral responses that should be a huge advantage for tumor progression.  相似文献   

9.
10.
IL-1 alpha and IL-beta are distinct cytokines, produced by activated macrophages. The temporal sequence in the processing and secretion as well as the mechanism(s) by which IL-1 is secreted from the cells remain undefined. Here we have studied the production of IL-1 from murine macrophages after stimulation with LPS or Listeria monocytogenes by two distinct methods: i) immunoprecipitation of radio-labeled IL-1 peptides from culture supernatants, and ii) determination of IL-1 activity by neutralization with monospecific antisera to either form of IL-1. We confirmed that precursor and mature forms of both IL-1 alpha and IL-1 beta can be detected in the culture supernatants after stimulation of the macrophages with 10 to 20 micrograms LPS/ml but, in addition, we report the novel finding that IL-1 beta is exclusively secreted in its unprocessed precursor form after stimulation of the cells with either 0.5 to 1 microgram LPS/ml or with L. monocytogenes. Exposure of the cells to increasing amounts of LPS led to the appearance of a 20-kDa IL-1 beta peptide in the culture supernatants concomitant with the release of a processing activity for the IL-1 beta precursor. These data therefore suggest that, in a first step, IL-1 beta is secreted as an unprocessed precursor protein that in a second, postsecretory step is cleaved by a LPS-inducible protease, thus generating the 20-kDa IL-1 beta peptide. The latter represents the biologically active IL-1 beta inasmuch as the generation of IL-1 beta activity in the culture supernatants strictly correlated with the appearance of the 20-kDa IL-1 beta peptide.  相似文献   

11.
W P Arend  B P Coll 《Cytokine》1991,3(5):407-413
Interleukin 1 receptor antagonist (IL-1ra) is a newly described cytokine that is produced by human monocytes cultured on adherent immunoglobulin G (IgG). These studies have characterized the binding of IL-1ra to receptors on human rheumatoid synovial cells in comparison to binding of IL-1 alpha. The human synovial cells bound 35S-IL-1ra with a Kd of 213 pM and a Ki of 134 pM. 125I-IL-1 alpha bound to the synovial cells with similar values, showing a Kd of 205 pM and a Ki of 58 pM. Cross-inhibition studies were performed to examine whether IL-1ra and IL-1 alpha interacted with the same receptors and in an identical fashion. At the highest concentrations of inhibitory proteins, the binding of each ligand was inhibited 100% by the same or opposite ligand. This result indicated that IL-1ra and IL-1 alpha bound to the same receptors and not to overlapping subsets of receptors. In addition, the binding of 35S-IL-1ra was inhibited in an identical fashion by equimolar amounts of IL-1ra or IL-1 alpha. However, twofold or greater amounts of IL-1ra in comparison to IL-1 alpha were required to offer comparable inhibition of binding of 125I-IL-1 alpha. These results suggest that IL-1ra and IL-1 alpha bind with equal avidity to IL-1 receptors but may not bind identically. Additional experiments are necessary to establish whether these two ligands may bind to different regions of the extracellular portion of the IL-1 receptor.  相似文献   

12.
BACKGROUND: Different forms of chronic airway inflammation may involve diverse pathogenic elements. In general, deficient defence response is a feature of chronic obstructive pulmonary disease (COPD), whereas distorted immunoregulatory mechanisms lead to development of asthmatic symptoms. In addition to diverse effector mechanisms, the cellular and humoral elements participating in the development of immune response may appear to be different in COPD and bronchial asthma (BA) patients. AIMS: To evaluate the immunoregulatory properties of T cells and monocytes in cultures of peripheral blood mononuclear cells (PBMC) and to determine the chosen cytokine profiles in COPD and BA patients. METHODS: The microcultures of PBMC from COPD and BA patients were assessed for the T-cell response to mitogens, saturation of interleukin (IL)-2 receptors, T-cell suppressive activity and monokine influence on lymphocyte proliferation. Concomitantly, the cytokine (IL-1beta, interleukin-1 receptor antagonist, tumour necrosis factor-alpha, IL-4, IL-6, IL-8) concentrations were determined in the serum, the broncho-alveolar lavage fluid and in the culture supernatants. RESULTS: The T-lymphocyte reactions (response to phytohaemagglutinin, IL-2 receptor saturation, suppressive activity) were lower in BA patients than in COPD patients. Reversely, the immunogenic activity of monocytes (IL-1beta versus IL-1ra production) was higher in BA patients than in COPD patients. The highest values of cytokine concentrations were found in the culture supernatants. The concentrations of tumour necrosis factor-alpha, IL-4, IL-6 and IL-8 were significantly higher and the concentration of IL-1ra was lower in BA patients than in COPD patients. CONCLUSION: The assessments of cellular immunoregulatory properties and cytokine profiles in the cultures of blood mononuclear cells may prove helpful for diagnostic and therapeutic discrimination between BA and COPD patients.  相似文献   

13.
The Fc fragment of immunoglobulin (Ig) has been shown to play an important role in the regulation of humoral immunity, cellular immunity, lymphocyte and monocyte activation, and immune mediator secretion. We wished to determine if Ig or Fc fragments would induce IL-6 production from monocytes. Incubation of monocytes purified from human peripheral blood mononuclear cells with aggregated Ig or Fc fragments of Ig induced interleukin-6 (IL-6) activity in the supernatants. Monomeric Ig taken from an intravenous preparation of Ig, from which all aggregated Ig are removed, would not induce IL-6 production from monocytes whereas as a heat-treated aliquot, presumably containing aggregates, did induce IL-6. The supernatants were assayed according to their ability to induce growth in a murine hybridoma cell line B9, or enhance Ig secretion of B cells stimulated with Staphylococcus aureus Cowan 1 (SAC). The IL-6 activity in the supernatants could be neutralized by a polyclonal rabbit anti-human IL-6 antiserum in both assays of IL-6 activity. Exposure of T-enriched or B-enriched lymphocyte subpopulations to Fc fragments did not induce the release of any IL-6 after 12 hr of incubation, but small amounts of IL-6 were produced by B-enriched cells after 60 hr of exposure to Fc fragments. Hence Fc fragments and aggregated Ig induce peripheral blood monocytes to rapidly secrete large quantities of interleukin-6.  相似文献   

14.
The biosynthesis and secretion of human interleukin-6 (IL-6) was studied in monocyte cultures stimulated with endotoxin. After labeling with [35S]methionine and immunoprecipitation with a specific antiserum one major (24 kDa) and four minor (27.5, 23.3, 22.5 and 21.8 kDa) molecular mass forms of IL-6 could be found in the cells and media. Incubation of monocyte media with sialidase and subsequently with endo-alpha-N-acetylgalactosaminidase, which cleaves Gal(beta 1-3)Gal-NAc from serine or threonine, led to the formation of only two forms of IL-6 with apparent molecular masses of 25 and 21.8 kDa. The latter had an electrophoretic mobility indistinguishable from that of 125I-labeled recombinant human IL-6. The results suggest that human monocyte IL-6 carries O-glycosidically bound carbohydrates with a Gal(beta 1-3)Gal-NAc core to which only sialic acid is bound. Differences in O-glycosylation are the major cause for the molecular heterogeneity of IL-6. A small part of IL-6 (27.5 kDa form) is in addition N-glycosylated. Incubation of monocytes with tunicamycin and 1-deoxymynnojirimycin and treatment of IL-6 with endoglucosaminidase H suggested that the 27.5 kDa form of IL-6 carries at least one N-linked complex-type oligosaccharide chain.  相似文献   

15.
HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.  相似文献   

16.
Interleukin 1 (IL-1), present in high amounts in normal human skin without any sign of inflammation, suggests a complex mechanism by which its bioactivity is regulated. The specific receptor antagonist of IL-1 (IL-1ra) was analyzed in human skin, sweat and cultured keratinocytes. Extracts of both skin and cultured keratinocytes blocked the binding of [125I]IL-1 to its receptor whereas sweat did not. The inhibitory activity was cell-associated, was not secreted by cultured keratinocytes, and IL-1ra mRNA was identified in these cells. There was an inverse relationship between the level of IL-1ra and that of IL-1 alpha and beta since extracts of differentiating keratinocytes (DK) and higher IL-1ra levels and expressed more mRNA for IL-1ra than non-differentiated keratinocytes (NDK), whereas NDK contained 4 times more IL-1 alpha and beta proteins than DK. This association of cell differentiation with a shift in agonist/antagonist ratio might be related to important autocrine or paracrine functions of IL-1 in normal and inflamed human skin.  相似文献   

17.
Glucocorticosteroid (GCS)-induced immunoglobulin (Ig) production in vitro is dependent on the functions of T cells and monocytes. T cells produce a replacing factor (TRF-S) which, with monocytes and a broad spectrum of concentrations (both above and below the physiologic range) of GCS, stimulates B cells to synthesize Ig. TRF-S is produced by T cells in cultures of mononuclear cells in the absence of stimulation over the initial 72 hr in culture. T cells, however, require the presence of monocytes or small quantities of interleukin 1 in order for the synthesis of TRF-S to occur. In addition to their role in stimulating TRF-S production, monocytes are also required in cultures of B cells responding to GCS and the cytokine. These experiments demonstrate that this monocyte function cannot be replaced by IL-1 or crude supernatants of monocyte cultures. Furthermore, exposure of TRF-S containing supernatants to oxidizing conditions does not alter the dependence of the cytokine on monocytes or GCS. Coculture of B cells and monocytes separated by a permeable membrane demonstrated that the influence of monocytes on GCS-induced Ig production is unlikely to be mediated by stable soluble factors. Thus, GCS-induced Ig production requires intimate contact between monocytes and B cells in the form of surface contact or unstable soluble mediators.  相似文献   

18.
Highly purified peripheral blood monocytes were cultured in the presence of rIL-4. Major changes in the morphology of the monocytes were observed. After day 5 of culturing the cells acquired a macrophage-like appearance, with increased cell size and extensive processes, suggesting that IL-4 may induce monocyte-macrophage differentiation. This notion is supported by the observed increased expression of MHC class II Ag, which is thought to be associated with monocyte differentiation. Exposure of monocytes to IL-4 resulted in a dose-dependent increase of the expression of MHC class II Ag, which became apparent after only 20 h of incubation. Maximal expression was obtained after incubation for 6 days, and persisted throughout the whole culture period. Similarly, IL-4 increased the expression of R for C3bi and p150.95 Ag, two members of the leukocyte function-associated Ag 1 family, whereas the expression of the third member, leukocyte function-associated Ag 1, remained unchanged during culture. Furthermore, it was shown that IL-4 inhibited the secretion of cytostatic and chemotactic compounds. Supernatants of monocytes cultured with IL-4 were, in contrast to control cultures, much less effective in inhibiting the growth of A375 melanoma cells. In addition, these supernatants failed to direct the migration of freshly isolated monocytes in a chemotaxis assay. Further analysis revealed that these supernatants exhibited reduced IL-1 activity, as measured in a mouse thymocyte proliferation assay, which might explain the low cytostatic and chemotactic activity. Taken together these results show that IL-4 modulates monocyte phenotype and function and may induce monocyte-macrophage differentiation in vitro.  相似文献   

19.
S100A8 and S100A9 are members of the S100A8 protein family that exist as homodimers and heterodimers in neutrophils, monocytes, and macrophages. Recent studies have shown the pivotal roles of S100A8 and S100A9 in the propagation of inflammation and keratinocyte proliferation in psoriasis. We found significant up-regulation of S100A8 and S100A9 secretion from keratinocytes in psoriatic lesions. To mimic the in vivo secretory conditions of S100A8 and S100A9 from psoriatic epidermal keratinocytes, we used the culture medium (CM) of S100A8 and S100A8/A9 adenovirus-transduced keratinocytes to investigate the functions of S100A8 and S100A9. We detected increased levels of various pro-inflammatory cytokines in the CM, including IL-8 and TNF-α, which are involved in aggravating psoriatic skin lesions, and IL-6 and members of the CXCL family of pro-angiogenic cytokines. The CM increased immune cell migration and increased angiogenesis in human umbilical vein endothelial cells. In conclusion, we found that the upregulated production of S100A8 and S100A9 by psoriatic epidermal keratinocytes activated adjacent keratinocytes to produce several cytokines. Moreover, S100A8 and S100A9 themselves function as pro-angiogenic and chemotactic factors, generating a psoriatic milieu in skin.  相似文献   

20.
Although Brucella frequently infects humans through inhalation, its interaction with pulmonary cells has been overlooked. We examined whether human lung epithelial cells produce proinflammatory mediators in response to Brucella infection. Infection with smooth or rough strains of Brucella abortus induced the secretion of IL-8 and GM-CSF by the bronchial epithelial cell lines Calu-6 and 16HBE14o-, but not by the alveolar epithelial cell line A549. Infected Calu-6 cells also produced low levels of MCP-1. Since monocyte-derived cytokines may induce chemokine secretion in epithelial cells, cocultures of human monocytes (THP-1 cell line) and respiratory epithelial cells were used to study such interaction. IL-8 and MCP-1 levels in B. abortus-infected THP-1:A549 and THP-1:Calu-6 cocultures, and MCP-1 levels in THP-1:16HBE14o- cocultures, were higher than those detected in infected epithelial monocultures. Conditioned medium from infected monocytes induced the secretion of IL-8 and/or MCP-1 by A549 and Calu-6 cells, and these effects were mainly mediated by IL-1 (in A549 cells) or TNF-α (in Calu-6 cells). Conversely, culture supernatants from Brucella-infected bronchial epithelial cells induced MCP-1 production by monocytes, an effect largely mediated by GM-CSF. This study shows that human lung epithelial cells mount a proinflammatory response to Brucella, either directly or after interaction with Brucella-infected monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号