首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
1. Twenty-two aerobically grown Gram-negative bacteria were analysed for demethylmenaquinones, menaquinones, 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols and ubiquinones. 2. All the eight enterobacteria and both the two facultative organisms (Aeromonas punctata and Aeromonas hydrophila) examined contain all the compounds listed above. The principal homologues are octaprenyl; in addition lower (down to tri- or tetra-prenyl for the 2-polyprenylphenols) and sometimes higher homologues are also present. 3. Strict aerobes are of two types, those that contain 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols and ubiquinones, and those that contain ubiquinones only. The principal homologues are generally octa- or nona-prenyl, although one organism (Agrobacterium tumefaciens) has ubiquinone-10 as its principal homologue. As in the enterobacteria, lower homologues of these compounds are also present. 4. In Escherichia coli W, Pseudomonas ovalis Chester and Pseudomonas fluorescens, radioactivity from p-hydroxy[U-(14)C]benzoic acid is incorporated into 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinones, ubiquinones and a compound tentatively identified as 2-polyprenyl-1,4-benzoquinone. The fact that radioactivity is incorporated into the first three compounds suggests that in these organisms, and indeed in all those Gram-negative bacteria that contain 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols, ubiquinones are formed by a biosynthetic sequence similar to that in Rhodospirillum rubrum. 5. The finding in ;Vibrio O1' (Moraxella sp.) and organism PC4 that 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols are chemically and radiochemically undetectable leads to the conclusion that they are not intermediates in the biosynthesis of ubiquinone by these and by other Gram-negative bacteria that do not contain detectable amounts of 2-polyprenylphenols and 6-methoxy-2-polyprenylphenols. However, ;Vibrio O1' (organism PC4 was not examined) does contain 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinone. 6. In Ps. ovalis Chester, radioactivity from l-[Me-(14)C]methionine is incorporated into the nuclear C-methyl and O-methyl groups of 6-methoxy-3-methyl-2-polyprenyl-1,4-benzoquinones and ubiquinone-9, and into the O-methyl group of 6-methoxy-2-polyprenylphenols.  相似文献   

2.
1. The polyprenylphenol and quinone complements of the non-photosynthetic Gram-negative bacteria, Pseudomonas ovalis Chester, Proteus mirabilis and `Vibrio O1'' (Moraxella sp.), were investigated. 2. Ps. ovalis Chester and Prot. mirabilis were shown to contain 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 5-demethoxyubiquinones, ubiquinones, an unidentified 1,4-benzoquinone [2-polyprenyl-1,4-benzoquinone (?)] and `epoxyubiquinones''. `Vibrio O1'' was shown to contain only 5-demethoxyubiquinones, ubiquinones and `epoxyubiquinones''. 3. It was established that in Ps. ovalis Chester 2-polyprenylphenols, 6-methoxy-2-polyprenylphenols, 6-methoxy-2-polyprenyl-1,4-benzoquinones, 5-demethoxyubiquinones and 2-polyprenyl-1,4-benzoquinones (?) are precursors of ubiquinones. 4. Intracellular distribution studies showed that in Ps. ovalis Chester ubiquinone and its prenylated precursors are localized entirely on the protoplast membrane. 5. Investigations into the oxygen requirements for ubiquinone biosynthesis by Ps. ovalis Chester showed that the organism could not convert p-hydroxybenzoic acid into ubiquinone in the absence of oxygen, although it could convert a limited amount into 2-polyprenylphenols. 6. Attempts were made to prepare cell-free preparations capable of synthesizing ubiquinone. Purified protoplast membranes of Ps. ovalis Chester were found to be incapable of carrying out this synthesis, even when supplemented with cytoplasm. With crushed-cell preparations of Ps. ovalis Chester, organism PC4 (Achromobacter sp.) and Escherichia coli, synthesis was observed, although this was attributable in part to a small number of intact cells present in the preparations.  相似文献   

3.
Radioactive [3H]5-demethoxyubiquinone-9 (3-methyl-2-nonaprenyl-6-methoxy-1,4-benzo-quione), an intermediate in the biosynthesis of ubiquione-9 by selected microorganisms and by the rat, has been synthesized. 4-Methyl-3-nitrophenol was converted to the corresponding anisole with [3H]methyl iodide and the anisole was then reduced to the corresponding aniline. Oxidation of 6-methyl-3-methoxy [3H]aniline with chromic acid gave the corresponding 1,4-benzo-quinone which was reduced and alkylated with solanesol in the presence of boron trifluorideetherate. Oxidation with ferric chloride gave two isomers, 5-demethoxyubiquinone-9 and 6-methyl-2-nonaprenyl-3-methoxy-1,4-benzoquinone which were separated by thin layer chromatography. The [3H]methoxyl-5-demethoxyubiquinone-9 prepared had a specific radioactivity of 100 mCi/mmole.  相似文献   

4.
Several azido-ubiquinones have been synthesized for the study of protein-ubiquinone interaction in succinate-cytochrome c reductase. In the absence of light, azido-ubiquinones are partially effective in restoring enzymatic activity to ubiquinone- and phospholipid-depleted reductase and the binding of azido-ubiquinones can be partially reversed by 5-(10-bromodecyl)-ubiquinone. When 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone reactivated reductase is illuminated with long wavelength UV light, a complete and irreversible inhibition is observed. This specific photo-inactivation, exerted only by 2-azido-3-methoxy-5-geranyl-6-methyl-1,4-benzoquinone, and not by other azido-ubiquinone derivatives, is evidence for the existence of a specific benzoquinone ring binding site in the enzyme.  相似文献   

5.
First and second half-wave reduction potentials of a series of 1,4-benzo- and 1,4-naphtho-quinones related to the naturally occurring ubiquinones, plastoquinones and menaquinones are correlated with substituent effects. Notably, E of 2,3-dimethoxy-1,4-benzoquinone is positive of the values for the 2,5- and 2,6-dimethoxy isomers, and of the value for methoxy-1,4-benzoquinone. This phenomenon is attributed to steric inhibition of resonance when two methoxy groups occupy adjacent positions, and the significance of this orientation in the ubiquinone series is highlighted.  相似文献   

6.
Farnesol, geranylgeraniol, dolichols and ubiquinones were the main radioactive components of the unsaponifiable lipid recovered from Phytophthora cactorum grown in aerated cultures containing [2-14C]mevalonate. The 14C recovered in each of these components was in the approximate proportion 2:4:3:5. When the culture was not aerated no radioactive ubiquinone was recovered. Most of the 14C recovered in the dolichols was found in dolichol-15 (37%), with decreasing amounts in dolichol-14 (30%) and -13 (14%) and only a little (5%) in dolichol-16, whereas the major components, by weight, of the mixture (13μg/g of damp-dry tissue) were dolichol-14, -15 and -16 in the approximate proportion of 1:3:1. Radioautography of appropriate chromatograms indicated the presence also of traces of radioactivity in dolichol-9, -10, -11, -12 and -17. Most (80%) of the 14C recovered in the ubiquinones was associated with ubiquinone-9, the rest being in ubiquinone-8. Most (80%) of the weight of ubiquinones (19μg/g of damp-dry tissue) was also ubiquinone-9. The identification of these compounds was by chromatographic methods and, for the ubiquinones and dolichols, was confirmed by mass spectrometry. In addition, the incorporation of 4R- and/or 4S-3H from [4-3H]-mevalonates showed the expected stereochemistry of biosynthesis, namely that farnesol, geranylgeraniol and ubiquinones were biogenetically all trans and the dolichols each contained three biogenetically trans isoprene residues, the remaining residues being biogenetically cis. The distribution of 14C in the components of the whole lipid of the fungus was consistent with 97% of both the farnesol and geranylgeraniol being present as the fatty acid ester. The corresponding value for dolichols was 37%. The observation by other workers, that this fungus does not form either squalene or sterol, was confirmed.  相似文献   

7.
The orientation of a methoxy substituent is known to substantially influence the electron affinity and vibrational spectroscopy of benzoquinones, and has been suggested to be important in determining the function of ubiquinone as a redox cofactor in bioenergetics. Ubiquinone functions as both the primary (Q(A)) and secondary (Q(B)) quinone in the reaction centers of many purple photosynthetic bacteria, and is almost unique in its ability to establish the necessary redox free energy gap for 1-electron transfer between them. The role of the methoxy substitution in this requirement was examined using monomethoxy analogues of ubiquinone-4 - 2-methoxy-3,5-dimethyl-6-isoprenyl-1,4-benzoquinone (2-MeO-Q) and 3-methoxy-2,5-dimethyl-6-isoprenyl-1,4-benzoquinone (3-MeO-Q). Only 2-MeO-Q was able to simultaneously act as Q(A) and Q(B) and the necessary redox potential tuning was shown to occur in the Q(B) site. In the absence of active Q(B), the IR spectrum of the monomethoxy quinones was examined in vitro and in the Q(A) site, and a novel distinction between the two methoxy groups was tentatively identified, consistent with the unique role of the 2-methoxy group in distinguishing Q(A) and Q(B) functionality.  相似文献   

8.
The ubiquinone precursors, 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, were isolated from ubiquinone-deficient mutants of Escherichia coli and identified by nuclear magnetic resonance and mass spectrometry. Mutants accumulating 2-octaprenyl-6-methoxy-1,4-benzoquinone and 2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone were shown to carry mutations in genes designated ubiE and ubiF, respectively. The ubiE gene was shown to be cotransducible with metE (minute 75) and close to two other genes concerned with ubiquinone biosynthesis. The ubiF gene was located close to minute 16 by cotransduction with the lip, gltA, and entA genes.  相似文献   

9.
A new method for the analysis of ubiquinones in various samples was developed using an HPLC system with postcolumn derivatization. Craven's reaction, a specific color reaction for the analysis of ubiquinones, was used in the system. Because the reaction progressed in organic solvents that contained ubiquinones and ethylcyanoacetate under an alkaline condition, the selectivity for ubiquinone detection was higher than that for ubiquinone detection using the nonderivatized ultraviolet detection system at 275 nm, a system widely used for the analysis of ubiquinones. The new detection system can avoid the adverse effects of impurities. Furthermore, it can confirm specificity by stopping the color reaction under a neutral condition. The detection limit for ubiquinone-10 was 1 ng (1.2 pmol). A good linearity for the calibration curve was observed in the range of 11.7 pmol to 11.7 nmol. To investigate the possible application of this method, various samples, such as soybean capsules used as a dietary supplement and biological materials (rice as well as bovine plasma and liver samples), were applied to the system and their ubiquinone contents were quantified. This method is thought to be widely and conveniently applicable for determining the level of ubiquinones because of its high selectivity for ubiquinone detection.  相似文献   

10.
2-Hydroxy 3-methyl 1,4-benzoquinone 5,6 epoxide was identified as secondary metabolite of a strain ofAspergillus terreus, a common contaminant of animal feeds. In addition, the following compounds were also tentatively identified to be produced by this organism: 2-hYdroxy 3-methyl 1,4-benzoquinone; 2-methyl 1,4-benzoquinone 5,6-epoxide; naphthazarin epoxide; and 2-hydroxy 3-methyl 1,4-benzoquinone 5, 6-epoxide.  相似文献   

11.
To investigate the protein-ubiquinone interaction in the bovine heart mitochondrial succinate-cytochrome c reductase region of the respiratory chain, three fluorine substituted ubiquinone derivatives, 2,3-dimethoxy-6-(9'-fluorodecyl)-1,4-benzoquinone (9FQ), 2-methoxy-5-trifluoromethyl-6-decyl-1,4-benzoquinone (TFQ), and 2-methoxy-5-trifluoromethyl-6-(9'-fluorodecyl)-1,4-benzoquinone (9FTFQ), were synthesized. 9FQ was synthesized by radical coupling of Q0 and bis(10-fluoroundecanoyl)peroxide. The latter was prepared by fluorination of undecylenic acid followed by thionylchloride treatment and peroxidation. TFQ was synthesized from 2,2,2-trifluoro-p-cresol by methylation, nitration, reduction, acetylation, nitration, reduction, oxidation, and radical alkylation. 9FTFQ was prepared by the radical alkylation of 2-methoxy-5-trifluoromethyl-1,4-benzoquinone with bis(10-fluoroundecanoyl)peroxide. All three fluoro-Q derivatives are active (greater than 50% the activity of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone) when used as electron acceptors for succinate-ubiquinone reductase. However, only 9FQ is active when used as an electron donor for ubiquinol-cytochrome c reductase or as an electron mediator for succinate-cytochrome c reductase. Both TFQ and 9FTFQ are competitive inhibitors for ubiquinol-cytochrome c reductase. A 19FNMR peak-broadening effect was observed for 9FQ when it was reconstituted with ubiquinone-depleted ubiquinol-cytochrome c reductase. A drastic up-field chemical shift was observed for TFQ when it was reconstituted with ubiquinone-depleted reductase. These results indicate that the binding environments of the benzoquinone ring and the alkyl side chain of the Q molecule are different. The strong up-field chemical shift for TFQ, and lack of significant chemical shift for 9FQ, suggest that the benzoquinone ring is bound near the paramagnetic cytochrome b heme.  相似文献   

12.
The reduction of the following exogenous quinones by succinate and NADH was studied in mitochondria isolated from both wild type and ubiquinone (Q)-deficient strains of yeast: ubiquinone-0 (Q0), ubiquinone-1 (Q1), ubiquinone-2 (Q2), and its decyl analogue 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB), duroquinone (DQ), menadione (MQ), vitamin K1 (2-methyl-3-phytyl-1,4-naphthoquinone), the plastoquinone analogue 2,3,6-trimethyl-1,4-benzoquinone (PQOc1), plastoquinone-2 (PQ2), and its decyl analogue (2,3-dimethyl-6-decyl-1,4-benzoquinone). Reduction of the small quinones DQ, Q0, Q1, and PQOc1 by NADH occurred in both wild type and Q-deficient mitochondria in a reaction inhibited more than 50% by myxothiazol and less than 20% by antimycin. The reduction of these small quinones by succinate also occurred in wild type mitochondria in a reaction inhibited more than 50% by antimycin but did not occur in Q-deficient mitochondria suggesting that endogenous Q6 is involved in their reduction. In addition, the inhibitory effects of antimycin and myxothiazol, specific inhibitors of the cytochrome b-c1 complex, on the reduction of these small quinones suggest the involvement of this complex in the electron transfer reaction. By contrast, the reduction of Q2 and DB by succinate was insensitive to inhibitors and by NADH was 20-30% inhibited by myxothiazol suggesting that these analogues are directly reduced by the primary dehydrogenases. The dependence of the sensitivity to the inhibitors on the substrate used suggests that succinate-ubiquinone oxidoreductase interacts specifically with center i (the antimycin-sensitive site) and NADH ubiquinone oxidoreductase preferentially with center o (the myxothiazol-sensitive site) of the cytochrome b-c1 complex. The NADH dehydrogenase involved in the myxothiazol-sensitive quinone reduction faces the matrix side of the inner membrane suggesting that center o may be localized within the membrane at a similar depth as center i.  相似文献   

13.
The ability of three naturally occurring analogues of ubiquinone to function in aerobic respiration in Escherichia coli has been studied. The compounds, which differ from ubiquinone in terms of the substituents on the quinone ring, accumulate in the cytoplasmic membranes of ubiE-, ubiF- and ubiG- mutants. One of the analogues (2-octaprenyl-3-methyl-6-methoxy-1,4-benzoquinone, NMQ), which lacks the 5-methoxyl group of the benzoquinone ring of ubiquinone promoted the oxidation of NADH, D-lactate and alpha-glycerophosphate but not succinate. Electron transport supported by MMQ was found to be coupled to phosphorylation. In contrast, 2-octaprenyl-6-methoxy-1,4-benzoquinone, which lacks both the 3-methyl and 5-methoxyl groups of ubiquinone, and 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone, in which the 5-methoxyl group of ubiquinone is replaced by an hydroxyl group, were virtually inactive in the oxidases tested. The ability of MMQ to function in respiration in isolated membranes is consistent with the findings that the growth rate and yield of a ubiF- strain, unlike other ubi- strains, were only slightly lower than those of a ubiF+ strain. The fact that MMQ is active in some but not all oxidases provides further support for the concept that the quinones link the individual dehydrogenases to the respiratory chain and that each dehydrogenase has specific structural requirements for quinone acceptors.  相似文献   

14.
An azido-ubiquinone derivative, 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyloctyl)-1,4-benzoquinone, was used to study the ubiquinone-protein interaction and to identify the ubiquinone-binding proteins in yeast mitochondrial ubiquinone-cytochrome c reductase. The phospholipids and Q6 in purified reductase were removed by repeated ammonium sulfate precipitation in the presence of 0.5% sodium cholate. The resulting phospholipid- and ubiquinone-depleted reductase shows no enzymatic activity; activity can be completely restored by the addition of phospholipids and Q6 or Q2. The ubiquinone- and phospholipid-replenished ubiquinonol-cytochrome c reductase is also fully active upon reconstituting with bovine succinate-ubiquinone reductase to form succinate-cytochrome c reductase. When an azido-ubiquinone derivative was added to the ubiquinone and phospholipid-depleted reductase in the dark, followed by the addition of phospholipids, partial reconstitutive activity was restored, while full ubiquinol-cytochrome c reductase activity was observed when Q2H2 was used as substrate in the assay mixture. Apparently, the large amount of Q2H2 present in the assay mixture displaces the azido-ubiquinone in the system. Photolysis of the azido-Q-treated reductase with long-wavelength ultraviolet light abolishes about 70% of both the restored reconstitutive activity and Q2H2-cytochrome c reductase activity. The activity loss is directly proportional to the covalent binding of [3H]azido-ubiquinone to the reductase protein. When the photolyzed, [3H]azido-ubiquinone-treated sample was subjected to SDS-polyacrylamide gel electrophoresis followed by analysis of the distribution of radioactivity among the subunits, the cytochrome b protein and a protein with an apparent molecular weight of 14 000 were heavily labeled. The amount of radioactive labeling in both these proteins was affected by the presence of phospholipids.  相似文献   

15.
Abstract A new quinone was isolated from the thermophilic methane-oxidizing bacterium strain H-2; was eluted after ubiquinone-8 on reversed-phase high-performance liquid chromatography (HPLC). Proton-magnetic resonance spectroscopy revealed that one of the isoprene units of a side chain was changed to 4-methyl-3-isopentene. The position of the substituted isoprene unit was localized by MS/MS spectrometry. The new quinone was identified as 2,3-dimethoxy-5-methyl-6-geranylgeranyl- [4-methyl-3-isopentenyl]-farnesyl-1,4-benzoquinone.  相似文献   

16.
The thermodynamic behavior of representative short (UQ2), middle (UQ4 and UQ6) and long-chain (UQ10) ubiquinones (UQ) mixed with dipalmitoyl-phosphatidylcholine (DPPC) was studied in monolayers at the air-water interface. The influence of isoprenoid chain-length of UQ on miscibility of both lipids was investigated by analysis of surface pressure-area isotherms and using fluorescence microscopy. Analysis of excess areas (A(ex)) and free energies of mixing (DeltaGm), calculated from compression isotherms in the full range of ubiquinones concentrations, has given evidences for UQ-rich constant-size (UQ6, UQ10) or less growth limited (UQ2, UQ4) microdomains formation within mixed films. Fluorescence microscopy observation revealed that ubiquinones are preferentially soluble in the expanded phase. When lateral pressure increased, concomitant evolutions of A(ex) and DeltaGm parameters, and composition dependence of collapse surface pressures, argue for an evolution towards a total segregation, never reached due to expulsion of ubiquinones from the film. The possible significance of these observations is discussed in relation to ubiquinones organization and similar chain length effects in membranes.  相似文献   

17.
Disulfide bond (Dsb) formation is catalyzed in the periplasm of prokaryotes by the Dsb proteins. DsbB, a key enzyme in this process, generates disulfides de novo by using the oxidizing power of quinones. To explore the mechanism of this newly described enzymatic activity, we decided to study the ubiquinone-protein interaction and identify the ubiquinone-binding domain in DsbB by cross-linking to photoactivatable quinone analogues. When purified Escherichia coli DsbB was incubated with an azidoubiquinone derivative, 3-azido-2-methyl-5-[(3)H]methoxy-6-decyl-1,4-benzoquinone ([(3)H]azido-Q), and illuminated with long wavelength UV light, the decrease in enzymatic activity correlated with the amount of 3-azido-2-methyl-5-methoxy-6-decyl-1,4-benzoquinone (azido-Q) incorporated into the protein. One azido-Q-linked peptide with a retention time of 33.5 min was obtained by high performance liquid chromatography of the V8 digest of [(3)H]azido-Q-labeled DsbB. This peptide has a partial NH(2)-terminal amino acid sequence of NH(2)-HTMLQLY corresponding to residues 91-97. This sequence occurs in the second periplasmic domain of the inner membrane protein DsbB in a loop connecting transmembrane helices 3 and 4. We propose that the quinone-binding site is within or very near to this sequence.  相似文献   

18.
The distribution and redox state of ubiquinone in rat and human tissues have been investigated. A rapid extraction procedure and direct injection onto HPLC were employed. It was found in model experiments that in postmortem tissue neither oxidation nor reduction of ubiquinone occurs. In rat the highest concentrations of ubiquinone-9 were found in the heart, kidney, and liver (130-200 micrograms/g). In brain, spleen, and intestine one-third and in other tissues 10-20% of the total ubiquinone contained 10 isoprene units. In human tissues ubiquinone-10 was also present at highest concentrations in heart, kidney, and liver (60-110 micrograms/g), and in all tissues 2-5% of the total ubiquinone contained 9 isoprene units. High levels of reduction, 70-100%, could be observed in human tissues, with the exception of brain and lung. The extent of reduction displayed a similar pattern in rat, but was generally lower.  相似文献   

19.
The effect of ubiquinones with different length of their chain (CoQ0, CoQ1, CoQ2, CoQ6, CoQ9) and their synthetic analogues (analogues of ubiquinone-1, hexahydroubiquinone-4, monophytylquinone, diphytylquinone, triphytylquinone) on the activity of ubiquinone dependent enzyme systems was studied in mitochondrial fractions from the yeast Candida guilliermondii. All of the ubiquinone homologues studied activated these systems. The synthetic analogues of ubiquinone nonspecifically inhibited the activity of NADH2-oxidase system. The inhibition was reversible when CoQ0 and CoQ1, but not CoQ6 and CoQ9, were added to the system. In the succinate-CoQ-reductase system, the inhibition caused by the analogues of ubiquinone was eliminated when all of the tested homologues were added to the system. In contrast to other analogues of ubiquinone, hexahydroubiquinone-4 was an inhibitor for the NADH2-oxidase system and an activator for the succinate-CoQ-reductase system, and eliminated the inhibiting action of other ubiquinone analogues in this system. Similar action of ubiquinone homologues was shown in the elimination of the inhibition of ubiquinone dependent systems caused by the specific inhibitors of electron transport, viz. rotenone and antimycin A.  相似文献   

20.
This study compared the effect of temperature (5-45 degrees C), water availability (water activity, aw; 0.995-0.75) and their interactions on the temporal rates of germination and mycelial growth of three mycotoxigenic strains of Aspergillus ochraceus and one isolate each of A. flavus, A. niger, Penicillium aurantiogriseum and P. hordei in vitro on a maize extract medium. Germination was very rapid at > 0.90 aw with an almost linear increase with time for all species. However, at < 0.90 aw, the germination rates of A. flavus and P. hordei were slower. The aw minima for germination were usually lower than for growth and varied with temperature. The effect of aw x temperature interactions on the lag phases (h), prior to germination, and on the germination rates (h(-1)), were predicted for the first time for these fungi using the Gompertz model modified by Zwietering. This showed that A. flavus, A. niger and the two Penicillium spp. had very short lag times between 0.995-0.95 aw over a wide temperature range. At marginal temperatures, these were significantly higher, especially at < 10 degrees C for Aspergillus spp. and > 30 degrees C for Penicillium spp. There were also statistically significant differences between lag phases and germination rates for three different isolates of A. ochraceus. The Aspergillus spp. also germinated faster than the Penicillium spp. The temperature x aw profiles for mycelial growth varied considerably between species, both in terms of rates (mm d(-1)) and tolerances. Predictions of the effects of important environmental factors such as temperature, aw and their interactions on lag times to germination, germination rates and mycelial growth are important in the development of hurdle technology approaches to predicting fungal spoilage in agricultural and food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号