首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A recent hypothesis suggests that proteolytic activity of the micromolar and millimolar Ca2+-requiring forms of the Ca2+-dependent proteinases (mu- and m-calpain, respectively) is regulated in vivo by their association with a phosphatidylinositol-containing site on the plasma membrane followed by autolysis of the proteinases. Phosphatidylinositol association lowers the Ca2+ concentration needed for autolysis, and autolysis, in turn, lowers the Ca2+ concentration needed for proteolytic activity. To test this hypothesis, we have compared the Ca2+ concentrations needed for autolysis and for proteolytic activity of the calpains both in the presence and the absence of phosphatidylinositol. Bovine skeletal muscle mu-calpain required 40-50 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 140-150 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 190-210 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. Consequently, mu-calpain is an active proteinase and does not require autolysis for activation. Bovine skeletal muscle m-calpain required 700-740 microM Ca2+ for half-maximal rate of proteolysis of a casein substrate, 370-400 microM Ca2+ for half-maximal autolysis in the presence of 80 microM phosphatidylinositol, and 740-780 microM Ca2+ for half-maximal autolysis in the absence of phosphatidylinositol. These results are consistent with the idea that m-calpain functions in its autolyzed form, but the results do not demonstrate that unautolyzed m-calpain is inactive. 80 microM phosphatidylinositol had no effect on the Ca2+ requirement of the autolyzed forms of either mu- or m-calpain but lowered the specific activity of mu-calpain to 20% of its activity in the absence of phosphatidylinositol. Of the four forms of the calpains, unautolyzed m-calpain, autolyzed m-calpain, and unautolyzed mu-calpain would not be proteolytically active at the free Ca2+ concentrations of 300-1200 nM present inside normal cells, and neither mu- nor m-calpain would undergo autolysis at these Ca2+ concentrations, even in the presence of phosphatidylinositol. Cells must contain a mechanism other than or in addition to membrane association and autolysis to activate the calpains.  相似文献   

2.
The rate of autolysis of mu- and m-calpain from bovine skeletal muscle was measured by using densitometry of SDS polyacrylamide gels and determining the rate of disappearance of the 28 and 80 kDa subunits of the native, unautolyzed calpain molecules. Rate of autolysis of both the 28 and 80 kDa subunits of mu-calpain decreased when mu-calpain concentration decreased and when beta-casein, a good substrate for the calpains, was present. Hence, autolysis of both mu-calpain subunits is an intermolecular process at pH 7.5, 0 or 25.0 degrees C, and low ionic strength. The 78 kDa subunit formed in the first step of autolysis of m-calpain was not resolved from the 80 kDa subunit of the native, unautolyzed m-calpain by our densitometer, so autolysis of m-calpain was measured by determining rate of disappearance of the 28 kDa subunit and the 78/80 kDa complex. At Ca2+ concentrations of 1000 microM or higher, neither the m-calpain concentration nor the presence of beta-casein affected the rate of autolysis of m-calpain. Hence, m-calpain autolysis is intramolecular at Ca2+ concentrations of 1000 microM or higher and pH 7.5. At Ca2+ concentrations of 350 microM or less, the rate of m-calpain autolysis decreased with decreasing m-calpain concentration and in the presence of beta-casein. Thus, m-calpain autolysis is an intermolecular process at Ca2+ concentrations of 350 microM or less. If calpain autolysis is an intermolecular process, autolysis of a membrane-bound calpain would require selective participation of a second, cytosolic calpain, making it an inefficient process. By incubating the calpains at Ca2+ concentrations below those required for half-maximal activity, it is possible to show that unautolyzed calpains degrade a beta-casein substrate, proving that unautolyzed calpains are active proteases.  相似文献   

3.
Binding of calpain fragments to calpastatin   总被引:1,自引:0,他引:1  
Their cDNA-derived amino acid sequences predict that the 80-kDa subunits of the micromolar and millimolar Ca(2+)-requiring forms of the Ca(2+)-dependent proteinase (mu- and m-calpain, respectively) each consist of four domains and that the 28-kDa subunit common to both mu- and m-calpain consists of two domains. The calpains were allowed to autolyze to completion, and the autolysis products were separated and were characterized by using gel permeation chromatography, calpastatin affinity chromatography, and sequence analysis. Three major fragments were obtained after autolysis of either calpain. The largest fragment (34 kDa for mu-calpain, 35 kDa for m-calpain) contains all of domain II, the catalytic domain, plus part of domain I of the 80-kDa subunit of mu- or m-calpain. This fragment does not bind to calpastatin, a competitive inhibitor of the calpains, and has no proteolytic activity in either the absence or presence of Ca2+. The second major fragment (21 kDa for mu-calpain and 22 kDa for m-calpain) contains domain IV, the calmodulin-like domain, plus approximately 50 amino acids from domain III of the 80-kDa subunit of mu- or m-calpain. The third major fragment (18 kDa) contains domain VI, the calmodulin-like domain of the 28-kDa subunit. The second and third major fragments bind to a calpastatin affinity column in the presence of Ca2+ and are eluted with EDTA. The second and third fragments are noncovalently bound, so the 80- and 28-kDa subunits of the intact calpain molecules are noncovalently bound at domains IV and VI. After separation in 1 M NaSCN, the 28-kDa subunit binds completely to calpastatin, approximately 30-40% of the 80-kDa subunit of mu-calpain binds to calpastatin, and the 80-kDa subunit of m-calpain does not bind to calpastatin in the presence of 1 mM Ca2+.  相似文献   

4.
The free Ca(2+) concentrations required for half-maximal proteolytic activity of m-calpain are in the range of 400-800 microM and are much higher than the 50-500 nM free Ca(2+) concentrations that exist in living cells. Consequently, a number of studies have attempted to find mechanisms that would lower the Ca(2+) concentration required for proteolytic activity of m-calpain. Although autolysis lowers the Ca(2+) concentration required for proteolytic activity of m-calpain, 90-400 microM Ca(2+) is required for a half-maximal rate of autolysis of m-calpain, even in the presence of phospholipid. It has been suggested that mu-calpain, which has a lower Ca(2+) requirement than m-calpain, might proteolyze m-calpain and reduce its Ca(2+) requirement to a level that would allow it to be active at physiological Ca(2+) concentrations. We have incubated m-calpain with mu-calpain for 60 min at a ratio of 1:50 mu-calpain:m-calpain, in the presence of 50 microM free Ca(2+); this Ca(2+) concentration is high enough for more than half-maximal activity of mu-calpain, but does not activate m-calpain. Under these conditions, mu-calpain caused no detectable proteolytic degradation of the m-calpain polypeptide and did not change the Ca(2+) concentration required for proteolytic activity of m-calpain. mu-Calpain also did not degrade the m-calpain polypeptide at 1000 microM Ca(2+), which is a Ca(2+) concentration high enough to completely activate m-calpain. It seems unlikely that mu-calpain could act as an "activator" of m-calpain in living cells. Because m-calpain rapidly degrades itself (autolyzes) at 1000 microM Ca(2+) and because the subsite specificities of mu- and m-calpain are very similar if not identical, failure of mu-calpain to rapidly degrade m-calpain at 1000 microM Ca(2+) suggests a unique role of autolysis in calpain function.  相似文献   

5.
Although the biochemical changes that occur during autolysis of mu- and m-calpain are well characterized, there have been few studies on properties of the autolyzed calpain molecules themselves. The present study shows that both autolyzed mu- and m-calpain lose 50-55% of their proteolytic activity within 5 min during incubation at pH 7.5 in 300 mM or higher salt and at a slower rate in 100 mM salt. This loss of activity is not reversed by dialysis for 18 h against a low-ionic-strength buffer at pH 7.5. Proteolytic activity of the unautolyzed calpains is not affected by incubation for 45 min at ionic strengths up to 1000 mM. Size-exclusion chromatography shows that ionic strengths of 100 mM or above cause dissociation of the two subunits of autolyzed calpains and that the dissociated large subunits (76- or 78-kDa) aggregate to form dimers and trimers, which are proteolytically inactive. Hence, instability of autolyzed calpains is due to aggregation of dissociated heavy chains. Autolysis removes the N-terminal 19 (m-calpain) or 27 (mu-calpain) amino acids from the large subunit and approximately 90 amino acids from the N-terminus of the small subunit. These regions form contacts between the two subunits in unautolyzed calpains, and their removal leaves only contacts between domain IV in the large subunit and domain VI in the small subunit. Although many of these contacts are hydrophobic in nature, ionic-strength-induced dissociation of the two subunits in the autolyzed calpains indicates that salt bridges have an important, possibly indirect, role in the domain IV/domain VI interaction.  相似文献   

6.
The calpain system is involved in a number of human pathologies ranging from the muscular dystrophies to Alzheimer's disease. It is important, therefore, to be able to obtain and to characterize both mu-calpain and m-calpain from human tissue. Although human mu-calpain can be conveniently obtained from either erythrocytes or platelets, no readily available source of human m-calpain has been described. Human placenta extracts contain both mu-calpain and m-calpain in nearly equal proportions and in significant quantities (3-4 mg mu-calpain and 4-5 mg m-calpain/1000 g placenta tissue). Placenta also contains calpastatin that elutes off ion-exchange columns over a wide range of KCl concentrations completely masking the mu-calpain activity eluting off these columns and even partly overlapping m-calpain elution. Placenta mu-calpain requires 50-70 microM Ca2+ and placenta m-calpain requires 450-460 microM Ca2+ for half-maximal proteolytic activity. Western analysis of washed placenta tissue shows that placenta contains both mu- and m-calpain, although some of the mu-calpain in whole placenta extracts likely originates from the erythrocytes that are abundant in the highly vascularized placenta. Placenta calpastatin could not be purified with conventional methods. The most prominent form of calpastatin in Western analyses of placenta obtained as soon as possible after birth was approximately 48-51 kDa; partly purified preparations of placenta calpastatin also contained 48-51 and 70 kDa polypeptides. Human placenta extracts likely contain two different calpastatin isoforms, a 48-51 kDa "placenta calpastatin" and a 70 kDa erythrocyte calpastatin.  相似文献   

7.
The Ca2+ concentrations required for half-maximal activity of mu- and m-calpain purified from bovine skeletal muscle were tested using four different protein substrates and three different synthetic peptide substrates. Hammersten casein, the commonly used substrate for measuring mu- and m-calpain activity, required 2.5 microM Ca2+ for half-maximal activity of mu-calpain and 290 microM Ca2+ for half-maximal activity of m-calpain. When Hammersten casein was dialyzed against 8 M urea and 10 mM EDTA to remove all endogenous Ca2+, it required 1.9 and 290 microM Ca2+ for half-maximal activity of mu- and m-calpain, respectively. Rabbit skeletal muscle myofibrils and rabbit skeletal muscle troponin required 65 microM and 24 microM Ca2+ for half-maximal activity of mu-calpain and 380 microM and 580 microM Ca2+ for half-maximal activity of m-calpain, respectively. The three synthetic substrates tested, Suc-Leu-Tyr-MCA, Boc-Leu-Thr-Arg-MCA, and Suc-Leu-Leu-Val-Tyr-MCA, required 1.6 microM to 3.7 microM Ca2+ for half-maximal activity of mu-calpain and 200 to 560 microM Ca2+ for half-maximal activity of m-calpain.  相似文献   

8.
Chicken breast muscle has three Ca2+-dependent proteinases, two requiring millimolar Ca2+ (m-calpain and high m-calpain) and one requiring micromolar Ca2+ (mu-calpain). High m-calpain co-purifies with mu-calpain through successive DEAE-cellulose (steep gradient), phenyl-Sepharose, octylamine agarose, and Sephacryl S-300 columns, but elutes after mu-calpain when using a shallow KCl gradient to elute a DEAE-cellulose column. The mu- and m-calpains have 80 and 28 kDa polypeptides and are analogous to the mu- and m-calpains that have been purified from bovine, porcine and rabbit skeletal muscle. High m-calpain, which seems to be a new Ca2+-dependent proteinase, is still heterogeneous after the DEAE-cellulose column eluted with a shallow KCl gradient. Additional purification through two successive HPLC-DEAE columns and one HPLC-SW-4000 gel permeation column produces a fraction having six major polypeptides and 6-8 minor polypeptides on SDS-PAGE. A 74-76 kDa polypeptide in this fraction reacts in Western blots with monospecific, polyclonal anti-calpain antibodies that react with both the 80 kDa and the 28 kDa polypeptides of mu- or m-calpain. High m-calpain also is related to mu- and m-calpain in that it causes the same limited digestion of skeletal muscle myofibrils, has a similar pH optimum near pH 7.9-8.4, requires Ca2+ for activity, and reacts with the calpain inhibitor, calpastatin, and a variety of serine and cysteine proteinase inhibitors in a manner identical to mu- and m-calpain. High m-calpain differs from mu- and m-calpain in its elution off DEAE-cellulose columns and its requirement of 3800 microM Ca2+ for one-half maximal activity compared with 5.35 microM Ca2+ for mu-calpain and 420 microM Ca2+ for m-calpain. The physiological significance of high m-calpain in unclear. The presence of mu-calpain in chicken breast muscle suggests that all skeletal muscles contain both mu- and m-calpain, although the relative proportions of these two proteinases may vary in different species.  相似文献   

9.
Although the Ca(2+)-dependent proteinase (calpain) system has been found in every vertebrate cell that has been examined for its presence and has been detected in Drosophila and parasites, the physiological function(s) of this system remains unclear. Calpain activity has been associated with cleavages that alter regulation of various enzyme activities, with remodeling or disassembly of the cell cytoskeleton, and with cleavages of hormone receptors. The mechanism regulating activity of the calpain system in vivo also is unknown. It has been proposed that binding of the calpains to phospholipid in a cell membrane lowers the Ca2+ concentration, [Ca2+], required for the calpains to autolyze, and that autolysis converts an inactive proenzyme into an active protease. Recent studies, however, show that the calpains bind to specific proteins and not to phospholipids, and that binding to cell membranes does not affect the [Ca2+] required for autolysis. It seems likely that calpain activity is regulated by binding of Ca2+ to specific sites on the calpain molecule, with binding to each site eliciting a response (proteolytic activity, calpastatin binding, etc.) specific for that site. Regulation must also involve an, as yet, undiscovered mechanism that increases the affinity of the Ca(2+)-binding sites for Ca2+.  相似文献   

10.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ.  相似文献   

11.
The finding that phospholipid micelles lowered the Ca2+ concentration required for autolysis of the calpains led to a hypothesis suggesting that the calpains are translocated to the plasma membrane where they interact with phospholipids to initiate their autolysis. However, the effect of plasma membranes themselves on the Ca2+ concentration required for calpain autolysis has never been reported. Also, if interaction with a membrane lowers the Ca2+ required for autolysis, the membrane-bound-calpain must autolyze itself, because it would be the only calpain having the reduced Ca2+ requirement. This implies that the autolysis is an intramolecular process, although several studies have shown that autolysis of the calpains in an in vitro assay and in the absence of phospholipid is an intermolecular process. Inside-out vesicles prepared from erythrocytes had no effect on the Ca2+ concentration required for autolysis of either mu- or m-calpain, although phosphatidylinositol (PI) decreased the Ca2+ concentration required for autolysis of the same calpains. The presence of a substrate for the calpains, beta-casein, reduced the rate of autolysis of both mu- and m-calpain both in the presence and in the absence of PI, suggesting that mu- and m-calpain autolysis is an intermolecular process in the presence of PI just as it is in its absence. Because IOV have no effect on the Ca2+ concentration required for calpain autolysis, association with the plasma membrane, at least with erythrocyte plasma membranes, does not initiate calpain autolysis by reducing the Ca2+ concentration required for autolysis as suggested by the membrane-activation hypothesis. Interaction with a membrane may serve to bind calpains to their substrates rather than promoting autolysis.  相似文献   

12.
The objectives were to investigate the roles of different calpains and protein kinase C (PKC) isoforms in muscle differentiation. Concentrations of mu- and m-calpain increased significantly whereas PKCalpha and delta declined significantly during L8 myoblast differentiation. Both mu-calpain and m-calpain antisense oligonucleotides inhibited myotube formation and creatine kinase activity during L8 myoblast differentiation. These results implied that both mu- and m-calpain were involved in L8 myoblast differentiation. To investigate the involvement of calpain in regulation of PKC concentrations, mu-calpain antisense oligonucleotides were added to L8 myoblasts. PKCalpha remained unchanged and PKCdelta declined. By adding m-calpain antisense oligonucleotides instead, PKCalpha level remained unchanged and PKCdelta concentrations increased significantly during differentiation. These results suggest that PKCalpha, but not PKCdelta, is the substrate for mu-calpain and PKCalpha and delta are the substrates for the m-calpain. In addition, more phosphorylated myogenin was found in day 2 antisense oligonucleotides treated L8 cells. It is concluded that the decline of PKCalpha mediated by m- and mu-calpain is essential for L8 myoblast differentiation. The decline of PKC during myoblast differentiation may cause hypo-phosphorylation of myogenin, which in turn activates muscle-specific genes during myogenesis.  相似文献   

13.
A monoclonal antibody to the small subunit common to both mu- and m-calpains can be used in an immunoaffinity column to purify either mu- or m-calpain in a proteolytically active form. Extracts in 150 mM NaCl, pH 7.5, are loaded onto a column containing the anti-28-kDa antibody; the column is washed with 500 mM NaCl, pH 7.5, and the bound calpain is eluted with 150 mM NaCl, 50 mM Tris-HCl, pH 9.5, and 1 mM EDTA. These elution conditions do not affect the proteolytic activity of either mu- or m-calpain. It is most efficient to reduce the volume and to remove any proteolytic activity from crude extracts by using successive phenyl Sepharose and ion-exchange columns before loading onto the immunoaffinity column. The column purifies m-calpain more effectively than mu-calpain; m-calpain is greater than 90% pure after a single pass through this column, whereas mu-calpain can be purified to >70% purity. The epitope for the monoclonal antibody is between amino acids 92 and 104 (numbers for human calpain) in the 28-kDa subunit. Evidently, this area is shielded in the calpain molecule in a way that affects binding of the antibody to the native molecule.  相似文献   

14.
Little is known about the relative intracellular localizations of the calcium-dependent proteases, calpains, and their naturally occurring inhibitor, calpastatin. In the present study, the intracellular localization of mu-calpain, m-calpain, and calpastatin was studied at the light microscopic level in proliferating A431 cells. Highly specific antibodies against the three antigens revealed distinct staining patterns in interphase and mitotic cells. Most notably, calpastatin in interphase cells was localized near the nucleus in tube-like, or large granular structures, while the calpains were more uniformly distributed through the cytoplasm in either a fibrillar form (mu-calpain) or a diffuse or fine granular form (m-calpain). The distribution patterns of the two calpain isozymes were distinctly different during mitosis. m-Calpain was concentrated at the mitotic spindle poles and midbody, while mu-calpain appeared to accumulate at the cell membrane and the spindles. Four other human cell lines as well as normal human monocytes were examined to determine if the calpains-calpastatin segregation patterns are common to other cells or are unique to the A431 line. With the exception of abundant nuclear mu-calpain in the C-33A cervical carcinoma, the segregation of the proteins was similar to that of A431. These studies indicate that calpains may be localized at regions which are relatively poor in calpastatin content. Proteins at these sites may be susceptible to calpain-catalyzed cleavage.  相似文献   

15.
Calpains I and II isolated from diverse tissues possess both Ca2+-independent, and Ca2+-dependent accessible hydrophobic regions. Possible subcellular organelle association of calpains involving these hydrophobic regions was studied. By homogenizing rat tissues directly in Ca2+ (50 microM), about 30-60% of the cytosolic calpain I and II activity reversibly associated with isolated subcellular fractions (microsomal greater than plasma membrane greater than nuclear). After binding to the particulate fraction, calpain II converted to a calpain I-like form exhibiting stronger Ca2+-independent binding to phenyl-Sepharose and a lower Ca2+ requirement for optimal activity. However, it retained its DEAE-cellulose chromatographic pattern, and precipitated with monospecific anti-calpain II antibodies. Although purified calpastatin (endogenous inhibitor) is known to form a Ca2+-dependent complex with calpains, it was not able to reverse the binding of calpains to the particulate fraction upon short incubation. It was, however, effective in blocking calpain binding when the isolated cytosolic fraction or a mixture of purified calpain and calpastatin was preincubated in the presence of Ca2+, and then added to the particulate fraction. Extraction of tissues under controlled conditions revealed that in fact calpains are already loosely associated with subcellular organelles even in the absence of Ca2+. This is the reason why in the crude homogenates with the addition of Ca2+, calpains strongly bind to the particulate fraction without interference by cytosolic calpastatin. Although calpastatin by complexing initially to calpain can prevent the association of this protease with subcellular organelles, it cannot dissociate calpains already bound to these subcellular fractions. By prior Ca2+-independent association with the hydrophobic proteins present in the subcellular fractions, calpains overcome the 3- to 30-fold inhibitory excess of calpastatin in tissues.  相似文献   

16.
Calpain (Ca2+-dependent cysteine proteinase) was purified to apparent homogeneity from carp muscle by the method of DEAE-cellulose, hydroxylapatite and Ultrogel AcA 34 column chromatographies. The purified enzyme is classified as calpain II (high-Ca2+-requiring form of calpain) from the effects of Ca2+ concentration, pH and the antibiotics on the activity. Carp muscle calpain II was inhibited by rat liver calpastatin, the specific inhibitor for calpain. It is probable that the calpain-calpastatin system may play a biologically fundamental and common role in various cells, since the inhibitory effect of calpastatin on calpain from different tissues of different species is well conserved.  相似文献   

17.
Calpain and synaptic function   总被引:1,自引:0,他引:1  
Proteolysis by calpain is a unique posttranslational modification that can change integrity, localization, and activity of endogenous proteins. Two ubiquitous calpains, mu-calpain and m-calpain, are highly expressed in the central nervous system, and calpain substrates such as membrane receptors, postsynaptic density proteins, kinases, and phosphatases are localized to the synaptic compartments of neurons. By selective cleavage of synaptically localized molecules, calpains may play pivotal roles in the regulation of synaptic processes not only in physiological states but also during various pathological conditions. Activation of calpains during sustained synaptic activity is crucial for Ca2+-dependent neuronal functions, such as neurotransmitter release, synaptic plasticity, vesicular trafficking, and structural stabilization. Overactivation of calpain following dysregulation of Ca2+ homeostasis can lead to neuronal damage in response to events such as epilepsy, stroke, and brain trauma. Calpain may also provide a neuroprotective effect from axotomy and some forms of glutamate receptor overactivation. This article focuses on recent findings on the role of calpain-mediated proteolytic processes in potentially regulating synaptic substrates in physiological and pathophysiological events in the nervous system.  相似文献   

18.
Identification of an endogenous activator of calpain in rat skeletal muscle   总被引:3,自引:0,他引:3  
An additional component of the regulatory system of rat skeletal muscle calpain has been identified. It exerts a potent activating effect on calpain activity and is a heat stable small molecular weight protein. Of the two calpain isozymes present in muscle, the activator is specific for calpain II, being uneffective with calpain I. It promotes activation of the proteinase by reducing 50 fold, from 1 mM to of 20 microM, the requirement of Ca2+ for maximum catalytic activity of the proteinase. However in the presence of the activator calpain II expresses a consistent fraction of the maximum activity even at significantly lower concentrations of Ca2+ (below 5 microM Ca2+). The activator effect follows kinetics that are consistent with the presence of specific binding sites on the calpain molecules. The activator not only removes in a dose dependent fashion the inhibition of calpain by calpastatin, but also prevents inhibition of the proteinase upon the addition of calpastatin. Competition experiments revealed that the proteinase contains distinct sites for the activator and the inhibitor, and that both ligands can bind to calpain with the formation of an almost fully active ternary complex.  相似文献   

19.
The calpains are a family of cysteine proteases with closely related amino acid sequences, but a wide range of Ca(2+) requirements (K(d)). For m-calpain, K(d) is approximately 325microM, for mu-calpain it is approximately 50microM, and for calpain 3 it is not strictly known but may be approximately 0.1microM. On the basis of previous structure determination of m-calpain we postulated that two regions of the calpain large subunits, the N-terminal peptide (residues 1-20) and a domain III-IV linker peptide (residues 514-530 in m-calpain) were important in defining K(d). The mutations Lys10Thr in the N-terminal peptide, and Glu517Pro in the domain linker peptide, reduced K(d) of m-calpain by 30% and 42%, respectively, revealing that these two regions are functionally important. The increased Ca(2+)-sensitivity of these mutants demonstrate that the Lys10-Asp148 salt link and the short beta-sheet interaction involving Glu517 are factors contributing to the high K(d) of m-calpain. Though these two regions are physically remote from the active site and Ca(2+)-binding site, they play significant roles in regulating the response of calpain to Ca(2+). Differences in these interactions in mu-calpain and in calpain 3 are also consistent with their progressively lower K(d) values.  相似文献   

20.
The goal of this study was to identify calpain substrates in muscle cells. Our hypothesis was that the yeast two-hybrid method could be used to identify novel calpain substrates. To accomplish this, native mu- and m-calpains, as well as a variety of calpain DNA fragments, were expressed in yeast cells and used to screen for binding proteins in a human skeletal muscle cDNA library. Calpain constructs that were used in the screening process included native mu- and m-calpains, a dominant negative (DN) m-calpain (i.e. active site modified), N-terminal truncated DN m-calpain (i.e. autolyzed DN-m-calpain) and, finally, an N- and C-terminal truncated m-calpain (i.e. autolyzed DN-m-calpain lacking a calcium-binding domain). Yeast cells were transformed using yeast two-hybrid expression vectors containing the different calpain constructs as "baits". Beta-galactosidase activity was assayed as an index of interaction between calpain and its potential target proteins. From this analysis, four clones (Ca2+-ATPase, novel nebulin-related protein (N-RAP), creatine kinase and glycogen phosphorylase) were recovered. Two of these, creatine kinase and glycogen phosphorylase, were selected for further study. In in-vitro assays, calpain was able to partially digest both proteins, suggesting that both creatine kinase and glycogen phosphorylase are natural calpain substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号