首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effects of potato [Solanum tuberosum L. (Solanaceae)] plant damage on the host plant-selection behaviour of the potato aphid, Macrosiphum euphorbiae Thomas (Homoptera: Aphididae), were studied. The damage inflicted to the plant was only of short duration and observations on aphid behaviour were made immediately following plant damage. The underlying questions of the study were to know how much time it takes for plant defence mechanisms to be activated and if this activation had noticeable repercussions on aphid behaviour. We considered stresses of various natures: biotic (pre-infestation by conspecifics or by Colorado potato beetles) and abiotic (scissor cuts). Aphid responses to host plant semiochemicals were investigated using a darkened arena bioassay and the probing behaviour was assessed using the electrical penetration graph technique. Aphids were attracted to their host plant (undamaged or damaged). In a preference test (undamaged plant vs. damaged plant), plants previously infested by conspecifics were preferred to undamaged plants, but this preference was not observed for heterospecific and abiotic damage. However, aphid probing behaviour was not modified on plants previously infested by conspecifics, whereas some changes were observed subsequently to heterospecific and abiotic damages. Our data present evidence that plants can respond to biotic and abiotic stresses soon after the damage is inflicted and when the damage is of short duration. The diverse consequences of these various local plant responses on M. euphorbiae behaviour are discussed in the context of plant defence strategies against aphid colonization.  相似文献   

2.
Viral diseases non-persistently transmitted by aphids are of great economic importance in several annual crops. Transmission efficiency of these non-persistent phytoviruses is dependant on vector efficiency (i.e. vector intrinsic ability to transmit the virus) but also on the vector activity that implies the early steps of aphid host plant selection process (i.e. brief intracellular stylet punctures after landing) and to their interplant movement ability. In Europe, Macrosiphum euphorbiae (Thomas 1878) is considered as one of the most serious virus vectors on potato (Solanum tuberosum L. 1753). Nevertheless, several alate aphid species that do not colonise potato plants are trapped in potato crops. Therefore, we investigated, through laboratory experiments, vector activity of one potato colonising aphid, M. euphorbiae, and two non-colonising potato aphids, the bird cherry-oat aphid Rhopalosiphum padi (L. 1758) and the pea aphid Acyrthosiphon pisum (Harris 1776). A settling experiment was used to evaluate dispersal activity, and the electrical penetration graph (EPG) technique was used to investigate probing activity on potato plants. Results showed that M. euphorbiae exhibited a better vector activity than other two aphid species in terms of landing and probing. By contrast, interplant movements were only recorded on non-colonising aphids, suggesting a better vector activity than M. euphorbiae in terms of locomotive behaviour. These data confirm the involvement of A. pisum and R. padi in the spread of non-persistent viruses.  相似文献   

3.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

4.
The aphids Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer) (Homoptera: Aphididae) are serious pests of potato (Solanum tuberosum L.) (Solanaceae), notably in transmitting several plant viruses. Heterospecific interactions may occur between these two species as they are often seen at the same time on the same potato plant in the field. As aphid infestation is known to induce both local and systemic changes, we conducted experiments to determine the effect of previous infestation on probing behaviour and feeding‐related parameters. We used the DC electrical penetration graph technique to characterize the influence of previous infestation by conspecific M. persicae or by heterospecific Ma. euphorbiae on M. persicae feeding behaviour at both local and systemic levels, i.e., on previously infested leaves and on non‐previously infested leaves of infested plants, respectively. Conspecific and heterospecific infestation led to similar modification of M. persicae feeding activities. However, the effects of previous infestation occurring at the local level were opposite to those observed at the systemic level. Myzus persicae food acceptance was slightly enhanced on previously infested leaves, whereas it was inhibited on non‐infested leaves of infested plants, which indicated an induced resistance mechanism. Our results advance the understanding of the mechanisms involved in aphid–host plant acceptance and colonization processes on potato plants in conspecific and heterospecific situations.  相似文献   

5.
Although mineral oil spray is one of the most effective ways to control the transmission of non‐persistent aphid‐borne viruses in the field, its mode of action is poorly understood. In this study, the effects of mineral oil treatment of potato plants on host selection behaviour, growth, and reproduction of potato aphids, Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae), were investigated. The effects were assessed 30 min, 1 day, and 7 days after treatment, (1) on aphid orientation behaviour by using a Y‐tube olfactometer, and (2) on aphid feeding behaviour by using the electrical penetration graph (EPG) technique. Olfactory experiments showed that the oil had a repulsive effect only 30 min after spraying. EPG experiments showed a slight modification of the aphid feeding behaviour mainly 7 days after treatment. The number of both salivation and sap ingestion events during the phloem phases were increased 7 days after treatment. In addition, irrespective of the time after treatment, xylem ingestion time was increased. Clip cage experiments were set up to assess potential effects of the oil treatment on aphid survival and population parameters. Nymphal mortality was increased on treated plants, whereas fecundity of surviving insects was enhanced. The antagonistic effects of oil treatment on aphids are discussed in a plant protection context.  相似文献   

6.
In pot experiments in a glasshouse, top-roll symptoms were induced on potato plants after infestation with the aphid Macrosiphum euphorbiae. Leaves showing symptoms accumulated carbohydrates and tuber yields of affected plants were decreased by 44% compared with controls. Leaves grown after killing the aphids had a normal appearance and sugar contents. Infestation with aphids primarily inhibited carbohydrate transport in the stem and the accumulation of 14C-labelled assimilate in the vascular bundles of the leaves. It is suggested that photosynthesis is inhibited by impaired phloem transport and subsequent accumulation of carbohydrates in the leaves and not by direct mechanical damage caused by the feeding aphid.  相似文献   

7.
Potato leafroll virus (PLRV; genus Polerovirus, family Luteoviridae) is a persistently transmitted circulative virus that depends on aphids for spreading. The primary vector of PLRV is the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Solanum tuberosum L. potato cv. Kardal (Solanaceae) has a certain degree of resistance to M. persicae: young leaves seem to be resistant, whereas senescent leaves are susceptible. In this study, we investigated whether PLRV‐infection of potato plants affected aphid behaviour. We found that M. persicae's ability to differentiate headspace volatiles emitted from PLRV‐infected and non‐infected potato plants depends on the age of the leaf. In young apical leaves, no difference in aphid attraction was found between PLRV‐infected and non‐infected leaves. In fact, hardly any aphids were attracted. On the contrary, in mature leaves, headspace volatiles from virus infected leaves attracted the aphids. We also studied the effect of PLRV‐infection on probing and feeding behaviour (plant penetration) of M. persicae using the electrical penetration graph technique (DC system). Several differences were observed between plant penetration in PLRV‐infected and non‐infected plants, but only after infected plants showed visual symptoms of PLRV infection. The effects of PLRV‐infection in plants on the behaviour of M. persicae, the vector of the virus, and the implications of these effects on the transmission of the virus are thoroughly discussed.  相似文献   

8.
Abstract Plants protect themselves against aphid attacks by species‐specific defense mechanisms. Previously, we have shown that Solanum stoloniferum Schlechtd has resistance factors to Myzus persicae Sulzer (Homoptera: Aphididae) at the epidermal/mesophyll level that are not effective against Macrosiphum euphorbiae Thomas (Homoptera: Aphididae). Here, we compare the nymphal mortality, the pre‐reproductive development time, and the probing behavior of M. persicae and M. euphorbiae on S. stoloniferum and Solanum tuberosum L. Furthermore, we analyze the changes in gene expression in S. stoloniferum 96 hours post infestation by either aphid species. Although the M. euphorbiae probing behavior shows that aphids encounter more probing constrains on phloem activities–longer probing and salivation time– on S. stoloniferum than on S. tuberosum, the aphids succeeded in reaching a sustained ingestion of phloem sap on both plants. Probing by M. persicae on S. stoloniferum plants resulted in limited feeding only. Survival of M. euphorbiae and M. persicae was affected on young leaves, but not on senescent leaves of S. stoloniferum. Infestation by M. euphorbiae changed the expression of more genes than M. persicae did. At the systemic level both aphids elicited a weak response. Infestation of S. stoloniferum plants with a large number of M. persicae induced morphological changes in the leaves, leading to the development of pustules that were caused by disrupted vascular parenchyma and surrounding tissue. In contrast, an infestation by M. euphorbiae had no morphological effects. Both plant species can be regarded as good host for M. euphorbiae, whereas only S. tuberosum is a good host for M. persicae and S. stoloniferum is not. Infestation of S. stoloniferum by M. persicae or M. euphorbiae changed the expression of a set of plant genes specific for each of the aphids as well as a set of common genes.  相似文献   

9.
In the field, caged potato plants of King Edward and Majestic cultivars infested with the potato aphid Macrosiphum euphorbiae developed top-roll symptoms, the proportion of affected plants increasing with the size and persistence of the aphid population. Yield of tubers from plots in which 90% of the plants had top-roll symptoms was 40% less than that from control plots; yield of saleable ware was even less. Foliage produced after the aphids had been killed was symptomless even when it arose from the axil of an affected leaf. Caged field plants treated with phorate granules to prevent aphid attack did not develop top-roll. Prolonged infestation of Pentland Crown, Majestic and King Edward plants by M. euphorbiae in a glasshouse induced rolling of upper leaves similar to top-roll of field plants. Experimental results suggest that rolling was directly attributable to heavy attack by M. euphorbiae, not to an aphid-transmitted pathogen.  相似文献   

10.
Enzyme-linked immunosorbent assay (ELISA) was adapted for the efficient detection and assay of potato leafroll virus (PLRV) in aphids. Best results were obtained when aphids were extracted in 0.05 M phosphate buffer, pH 7.0, and the extracts incubated at 37 °C for 1 h before starting the assay. Using batches of 20 green peach aphids (Myzus persicae), about 0.01 ng PLRV/aphid could be detected. The virus could also be detected in single aphids allowed a 1-day acquisition access period on infected potato leaves. The PLRV content of aphids depended on the age of potato source-plants and the position of source leaves on them. It increased with increase in acquisition access period up to 7 days but differed considerably between individual aphids. A maximum of 7 ng PLRV/aphid was recorded but aphids more usually accumulated about 0.2 ng PLRV per day. When aphids were allowed acquisition access periods of 1–3 days, and then caged singly on Physalis floridana seedlings for 3 days, the PLRV content of each aphid, measured subsequently, was not strongly correlated with the infection of P. floridana. The concentration of PLRV in leaf extracts differed only slightly when potato plants were kept at 15, 20, 25 or 30 °C for 1 or 2 wk, but the virus content of aphids kept on leaves at the different temperatures decreased with increase of temperature. PLRV was transmitted readily to P. floridana at all temperatures, but by a slightly smaller proportion of aphids, and after a longer latent period, at 15 °C than at 30 °C. The PLRV content of M. persicae fed on infected potato leaves decreased with increasing time after transfer to turnip (immune to PLRV). The decrease occurred in two phases, the first rapid and the second very slow. In the first phase the decrease was faster, briefer and greater at 25 and 30 °C than at 15 and 20 °C. No evidence was obtained that PLRV multiplies in M. persicae. These results are compatible with a model in which much of the PLRV in aphids during the second phase is in the haemocoele, and transmission is mainly limited by the rate of passage of virus particles from haemolymph to saliva. The potato aphid, Macrosiphum euphorbiae, transmitted PLRV much less efficiently than M. persicae. Its inefficiency as a vector could not be ascribed to failure to acquire or retain PLRV, or to the degradation of virus particles in the aphid. Probably only few PLRV particles pass from the haemolymph to saliva in this species. The virus content of M. euphorbiae collected from PLRV-infected potato plants in the field increased from early June to early July, and then decreased. PLRV was detected both in spring migrants collected from the plants and in summer migrants caught in yellow water-traps. PLRV was also detected in M. persicae collected from infected plants in July and August, and in trapped summer migrants, but their PLRV content was less than that of M. euphorbiae, and in some instances was too small for unequivocal detection.  相似文献   

11.
Analysis of electrically recorded feeding behaviour of aphids was combined with colony‐development tests to search for sources of resistance to Myzus persicae (Sulzer) (Homoptera: Aphididae) in tuber‐bearing Solanum species (Solanaceae), aiming at a reduction of potato leaf roll virus (PLRV) transmission. Twenty genotypes, originating from 14 gene bank accessions, representing 13 wild tuber‐bearing Solanum spp., three Solanum tuberosum L. (potato) cultivars, and one S. tuberosum breeding line, were selected. Colony‐development tests were carried out in no‐choice experiments by placing adult aphids on plants of each genotype and counting numbers of nymphs and adults on young plants after 8 and 15 days, and on flowering plants after 14 and 30 days. Large differences were observed among genotypes: some developed small colonies and others developed large ones. Also, in a few genotypes, resistance in mature plants was different for leaves of different ages; young leaves were resistant to aphids whereas old senescent leaves were susceptible. The electrical penetration graph (DC‐EPG system) technique was used to study aphid feeding behaviour on each Solanum genotype for 6 h. Electrical penetration graph (EPG) results also showed large differences among the genotypes, indicating resistance at the leaf surface and at three different levels of plant tissue (epidermis, mesophyll, and phloem). Therefore, it was concluded that different mechanisms of resistance to M. persicae exist among the genotypes analysed. EPGs recorded from aphids on Solanum berthaultii Hawkes and Solanum tarijense Hawkes with and without glandular trichomes showed that strong surface resistance can bias EPG parameters associated with resistance located in deeper tissues. Experimental evidence is presented that the resistance to aphids in the genotypes with glandular trichomes strongly depends on these morphological structures.  相似文献   

12.
Aphid saliva can suppress the blocking of sieve elements, a reaction that plants employ to inhibit aphid feeding, but aphid saliva can also elicit plant defence responses. Such plant responses might affect interactions between different aphid species and intraspecifically, e.g. among different biotypes. The objectives of our study were to investigate if feeding behaviour and performance of two biotypes of the lettuce aphid Nasonovia ribisnigri are affected by (1) feeding by the other biotype and (2) feeding by the green peach aphid Myzus persicae or the potato aphid Macrosiphum euphorbiae. Additionally the effect of feeding in a group was studied. All experiments were performed on both a resistant and an isogenic susceptible lettuce cultivar. Feeding or probing by conspecific or heterospecific aphids had different effects on Nasonovia ribisnigri biotypes. Aphids were only slightly affected by feeding or probing of the same biotype on both susceptible and resistant lettuce. N. ribisnigri virulent biotype Nr:1 suppressed the resistance against Nr:0 in the resistant cultivar. In contrast, defence was induced by Nr:1 against Nr:0 in susceptible lettuce. Co-infestation by M. euphorbiae and M. persicae had minor effects on Nr:0. Defence against Nr:1 was induced on both susceptible lettuce and resistant lettuce by Nr:0 and M. euphorbiae. Additionally, M. persicae induced defence in resistant lettuce against Nr:1. Effectors in the saliva of Nr:1 aphids are likely responsible for the defence suppression in lettuce. Identification of these effectors could lead to a better understanding of the mechanism of virulence in N. ribisnigri.  相似文献   

13.
Plant pathogens are able to influence the behaviour and fitness of their vectors in such a way that changes in plant–pathogen–vector interactions can affect their transmission. Such influence can be direct or indirect, depending on whether it is mediated by the presence of the pathogen in the vector's body or by host changes as a consequence of pathogen infection. We report the effect that the persistently aphid‐transmitted Cucurbit aphid‐borne yellows virus (CABYV, Polerovirus) can induce on the alighting, settling and probing behaviour activities of its vector, the cotton aphid Aphis gossypii. Only minor direct changes on aphid feeding behaviour were observed when viruliferous aphids fed on non‐infected plants. However, the feeding behaviour of non‐viruliferous aphids was very different on CABYV‐infected than on non‐infected plants. Non‐viruliferous aphids spent longer time feeding from the phloem in CABYV‐infected plants compared to non‐infected plants, suggesting that CABYV indirectly manipulates aphid feeding behaviour through its shared host plant in order to favour viral acquisition. Viruliferous aphids showed a clear preference for non‐infected over CABYV‐infected plants at short and long time, while such behaviour was not observed for non‐viruliferous aphids. Overall, our results indicate that CABYV induces changes in its host plant that modifies aphid feeding behaviour in a way that virus acquisition from infected plants is enhanced. Once the aphids become viruliferous they prefer to settle on healthy plants, leading to optimise the transmission and spread of this phloem‐limited virus.  相似文献   

14.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

15.
Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17‐fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.  相似文献   

16.
Jasmonate and salicylatemediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In twochoice tests, adult aphids preferred control wheat leaves to MeJA or SA treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJAtreated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJAtreated plants was significantly shorter than on control plants. Total duration of salivation period on SAtreated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJAdependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SAmediated resistance may be phloembased. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA and SAinduced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance.  相似文献   

17.
Plants face various abiotic and biotic environmental factors and therefore need to adjust their phenotypic traits on several levels. UV‐B radiation is believed to impact herbivorous insects via host plant changes. Plant responses to abiotic challenges (UV‐B radiation) and their interaction with two aphid species were explored in a multifactor approach. Broccoli plants [Brassica oleracea L. convar. botrytis (L.), Brassicaceae] were grown in two differently covered greenhouses, transmitting either 80% (high UV‐B) or 4% (low UV‐B) of ambient UV‐B. Three‐week‐old plants were infested with either specialist cabbage aphids [Brevicoryne brassicae (L.), Sternorrhyncha, Aphididae] or generalist green peach aphids [Myzus persicae (Sulzer), Sternorrhyncha, Aphididae]. Plants grown under high‐UV‐B intensities were smaller and had higher flavonoid concentrations. Furthermore, these plants had reduced cuticular wax coverage, whereas amino acid concentrations of the phloem sap were little influenced by different UV‐B intensities. Cabbage aphids reproduced less on plants grown under high UV‐B than on plants grown under low UV‐B, whereas reproduction of green peach aphids in both plant light sources was equally poor. These results are likely related to the different specialisation‐dependent sensitivities of the two species. The aphids also affected plant chemistry. High numbers of cabbage aphid progeny on low‐UV‐B plants led to decreased indolyl glucosinolate concentrations. The induced change in these glucosinolates may depend on an infestation threshold. UV‐B radiation considerably impacts plant traits and subsequently affects specialist phloem‐feeding aphids, whereas aphid growth forces broccoli to generate specific defence responses.  相似文献   

18.
Trehalose is a disaccharide sugar that is now considered to be widely distributed among higher plants. Trehalose has been attributed a number of roles, including control of basic plant processes, such as photosynthesis, and conferring tolerance to abiotic stresses, such as desiccation and high salinity. Trehalose is also a common storage sugar used by insects. In this study, we used laboratory investigations to examine various aspects of trehalose dynamics in an aphid–host plant system (Arabidopsis and the peach potato aphid, Myzus persicae). Trehalose concentrations were measured by [1-H]-NMR. Myzus persicae reared on Arabidopsis, but not on black mustard or spring cabbage, contained considerable quantities of trehalose (5 % w/w dry matter). In Arabidopsis foliage, feeding by aphids induced a density-dependent accumulation of trehalose up to 5 mg g?1 dry weight. Leaves that were not challenged directly by aphids also exhibited increased trehalose concentrations, indicating that this accumulation was systemic. Trehalose was measured at high concentrations in the phloem sap of plants challenged by aphids, suggesting that aphid feeding induced the plant to produce significant quantities of trehalose, which moved through the plant and into the aphids via the phloem sap. Trehalose was also excreted in the aphid honeydew. Further work is required to clarify whether this trehalose accumulation in Arabidopsis has a direct role or a signalling function in plant tolerance of, or resistance to, aphid feeding, and if a similar accumulation of this sugar occurs when other species or genotypes of aphids are reared on this host plant.  相似文献   

19.
Studies were undertaken to determine the role of symbionts and UV exposure in biosynthesis of the aphid-specific polyketides, sorbic acid and quinone pigments. Injection of adult potato aphids, Macrosiphum euphorbiae (Thomas), with the antibiotic rifampicin did not alter the level of sorbic or myristic acid in triglycerides of resultant progeny; pigmentation was also unaffected. However, antibiotic injection did produce marked physiological effects; progeny from injected aphids were smaller, slower to mature, and not fecund. Light microscopy confirmed that only 8% of rifampicin-treated aphids contained mycetocytes; thus, symbiont involvement in the production of this unusual UV-quenching short chain fatty acid is not supported. Following multigenerational exposure to long wavelength UV light, no substantial changes in sorbic acid content were detected in the potato aphid or the oleander aphid, Aphis nerii Fonscolombe. Pigments from UV-exposed oleander aphids had a peak absorbance at 390 nm, 70 nm lower than unexposed aphids. This suggests a photo-protective role for the pigments of the sunlight-inhabiting A. nerii; by contrast, no changes were observed in pigments of M. euphorbiae which usually feeds in the shade. Injection of adult potato aphids with sodium [1-14C]-acetate rapidly labeled both sorbic acid and pigments, particularly among the latter a yellow pigment which co-chromatographed with the dominant C15 yellow pigment of the oleander aphid. These data support the hypothesis that aphid C30 pigments are built up by coupling of “monomeric type” C15 pigments. Although aphid and not symbiont enzymes appear to synthesize these acetogenins, a possible biosynthetic link between sorbic acid and aphid pigments requires further clarification. © 1994 Wiley-Liss, Inc.  相似文献   

20.
1. The concept of plant defence syndrome states that plant species growing in similar biotic or abiotic constraints should have convergent defensive traits. This article is a first step to test the prediction of this concept, by conducting experiments on wild Solanum species (or accessions) that originated from the Andes. The nature and the tissue localisation of the resistance of five wild Solanum species known to be resistant against the aphids Myzus persicae and Macrosiphum euphorbiae were determined by olfactometry and electrical penetration graph experiments. 2. Volatile organic compounds may contribute to wild Solanum resistance, depending on Solanum accessions and aphid species. Volatiles of S. bukasovii and S. stoloniferum PI 275248 were not attractive to M. persicae, whereas S. bukasovii was repulsive to M. euphorbiae. In contrast, volatiles of S. stoloniferum PI 275248 were attractive for M. euphorbiae. 3. Some wild Solanum species presented a generalised resistance in all plant tissues, so as for S. bukasovii and S. stoloniferum PI 275248 against M. persicae. However, except for S. bukasovii which was susceptible to M. euphorbiae, all tested Solanum species presented a phloem‐based antixenosis resistance against the two aphid species. 4. A review of articles focused on the nature of resistance of wild Solanum species against aphids corroborated with our results, i.e. a phloem‐based antixenosis resistance against aphids is the rule concerning the system aphids–wild Solanum species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号