首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 701 毫秒
1.
The family Galatheidae is among the most diverse families of anomuran decapod crustaceans, and the South‐West Pacific is a biodiversity hot spot for these squat lobsters. Attempts to clarify the taxonomic and evolutionary relationships of the Galatheidae on the basis of morphological and molecular data have revealed the existence of several cryptic species, differentiated only by subtle morphological characters. Despite these efforts, however, relationships among genera are poorly understood, and the family is in need of a detailed systematic review. In this study, we assess material collected in different surveys conducted in the Solomon Islands, as well as comparative material from the Fiji Islands, by examining both the morphology of the specimens and two mitochondrial markers (cytochrome oxidase subunit I, COI, and 16S rRNA). These two sources of data revealed the existence of eight new species of squat lobster, four of which were ascribed to the genus Munida, two to the genus Paramunida, one to the genus Plesionida, and the last species was ascribed to the genus Agononida. These eight species are described along with phylogenetic relationships at the genus level. Our findings support the taxonomic status of the new species, yet the phylogenetic relationships are not yet fully resolved. Further molecular analysis of a larger data set of species, and more conserved genes, will help clarify the systematics of this group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 465–493.  相似文献   

2.
Advances in the understanding of biological radiations along tropical mountains depend on the knowledge of phylogenetic relationships among species. Here we present a species-level molecular phylogeny based on a multilocus dataset for the Andean hummingbird genus Coeligena. We compare this phylogeny to previous hypotheses of evolutionary relationships and use it as a framework to understand patterns in the evolution of sexual dichromatism and in the biogeography of speciation within the Andes. Previous phylogenetic hypotheses based mostly on similarities in coloration conflicted with our molecular phylogeny, emphasizing the unreliability of color characters for phylogenetic inference. Two major clades, one monochromatic and the other dichromatic, were found in Coeligena. Closely related species were either allopatric or parapatric on opposite mountain slopes. No sister lineages replaced each other along an elevational gradient. Our results indicate the importance of geographic isolation for speciation in this group and the potential interaction between isolation and sexual selection to promote diversification.  相似文献   

3.
The jumping pitvipers, genus Atropoides, occur at low to middle elevations throughout Middle America. Recent molecular phylogenetic analyses have included all six species of Atropoides, but only two studies have found Atropoides to be monophyletic and questions persist about relationships within the A. nummifer complex. In this study, our phylogenetic analyses of morphological data provide strong support for the monophyly of Atropoides and recover relationships within the genus that are mostly congruent with those of recent molecular studies, further supporting the evolutionary and biogeographic hypotheses proposed in those studies. Our analyses find support for a sister relationship between A. picadoi and the other Atropoides species and an A. occiduus–A. indomitus clade sister to an A. nummifer–A. mexicanus–A. olmec clade. Within the A. nummifer complex, we find A. mexicanus and A. olmec to be sister species to the exclusion of A. nummifer. We include morphological synapomorphies to support each clade within Atropoides and describe and illustrate the hemipenes of each species. In addition, we discuss the importance of morphological phylogenetics and the functionality and limitations of hemipenial data in systematics.  相似文献   

4.
The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data. Also, morphological data presented some unresolved polytomies, which could reflect the very recent divergence of the subgroup. The total evidence phylogenetic reconstruction presented well-supported relationships and summarized the results of all analyses. The diversification of the willistoni subgroup began about 7.3 Ma with the split of D. insularis while D.paulistorum complex has a much more recent diversification history, which began about 2.1 Ma and apparently has not completed the speciation process, since the average time to sister species separation is one million years, and some entities of the D. paulistorum complex diverge between 0.3 and 1 Ma. Based on the obtained data, we propose the categorization of the former “semispecies” of D. paulistorum as a subspecies and describe the subspecies D. paulistorum amazonian, D. paulistorum andeanbrazilian, D. paulistorum centroamerican, D. paulistorum interior, D. paulistorum orinocan and D. paulistorum transitional.  相似文献   

5.
Sargassum is one of the most species‐rich genera in the brown algae with over 400 described species worldwide. The bulk of these species occurs in Pacific‐Indian ocean waters with only a small portion found on the Atlantic side of the Isthmus of Panama. Sargassum also has one of the most subdivided and complex taxonomic systems used within the algae. Systematic distinctions within the genus are further complicated by high rates of phenotypic variability in several key morphological characters. Molecular analyses in such systems should allow testing of systematic concepts while providing insights into speciation and evolutionary patterns. Global molecular phylogenetic analyses using both conserved and variable regions of the Rubisco operon (rbcL and rbcL‐IGS‐rbcS) were performed with species from the Gulf of Mexico, Caribbean, and Pacific basin. Results confirm earlier analyses based on rbcL‐IGS‐rbcS from Pacific species at the subgeneric and sectional level while providing additional insights into the systematics and phylogenetics on a global scale. For example, species east of the Isthmus of Panama form a distinct well‐resolved clade within the tropical subgenus. This result in sharp contrast to traditional systematic treatments but provides a window into the evolutionary history of this genus in the Pacific and Atlantic Ocean basins and a possible means to time speciation events.  相似文献   

6.
The phylum Nematoda includes the genus Longidorus, a remarkable group of invertebrates that are polyphagous root‐ectoparasites of many plants including various agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Longidorus is complicated by phenotypic plasticity (intraspecific variability and minor interspecific differences) leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in southern Spain that detected 11 species of Longidorus. We developed a comparative study amongst these related species by considering morphological and morphometric features together with molecular data from nuclear ribosomal RNA genes [D2‐D3 expansion segments of large ribosomal subunit (28S), internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of our molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of three new species of the genus, described herein as Longidorus baeticus sp. nov. , Longidorus oleae sp. nov. , and Longidorus andalusicus sp. nov. , and eight known species (Longidorus alvegus, Longidorus crataegi, Longidorus fasciatus, Longidorus intermedius, Longidorus iuglandis, Longidorus magnus, Longidorus rubi, and Longidorus vineacola). Phylogenetic analyses of Longidorus spp. based on the three molecular markers resulted in a general consensus of these species grouping, as lineages were maintained for the majority of species (i.e. species with a conoid‐rounded lip region, amphidial fovea asymmetrically bilobed, female tail bluntly rounded), but not in some others (i.e. positions of L. crataegi, L. intermedius, and L. rubi were quite variable). To date, this is the most complete phylogenetic analysis for Longidorus and Paralongidorus species, with the highest number of species included. No correspondence between phylogenetic trees and morphological characters was found for ribosomal markers, with the exception of amphidial shape. Thus, polyphasic identification, based on integration of molecular analysis with morphology, is a tool beyond doubt in Longidorus identification. © 2013 The Linnean Society of London  相似文献   

7.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

8.
Based largely on homoplastic characters of external morphology, the current systematics of the tribe Onthophagini and allied dung beetle lineages is unstable, contradictory, and thus inefficient. A number of recently proposed molecular phylogenies conflict strongly with each other and with formal classification, and none of them provides new tools for the improvement of dung beetle systematics. We explored the source of these inconsistencies by performing an independent, morphology‐based phylogenetic analysis of the “Serrophorus complex”, one of the most systematically confusing knots among the onthophagines, that involves 52 species from various genera of Onthophagini and allied tribes. The phylogenetic pattern revealed conflicts with existing classifications and with most of the earlier molecular phylogenies. However, it was largely congruent with the molecular phylogeny (Evolution 2005, 59 , 1060), using the largest gene sampling thus far. All current competing phylogenetic hypotheses were evaluated against each other, and the degree of their biogeographic plausibility was used as an additional evaluative criterion. Of the 91 morphological characters involved in our analyses, traits belonging to the endophallic sclerites of the aedeagus had a very strong phylogenetic signal. Terminology of these endophallic characters was established and their morphology was studied in detail, illustrated, and presented as a tool for further practical use. The enormous variety of shapes of the lamella copulatrix within the Onthophagini and allies present a methodological problem in character coding for phylogenetic analyses. Based on the performance of alternative coding approaches, it is argued that a seemingly less informative absence/presence coding scheme would be a better choice. The phylogenetic structure of the Serrophorus complex has been largely resolved, and some taxonomic changes improving its systematics are recommended.
© The Willi Hennig Society 2011.  相似文献   

9.
10.
Relatedness, phylogeny, and evolution of the fungi   总被引:3,自引:0,他引:3  
Junta Sugiyama 《Mycoscience》1998,39(4):487-511
Recent advances in fungal systematics are reviewed in relation to our previous studies. The usefulness of the integrated analysis of genotypic (especially 18S rRNA gene sequence comparisons) and phenotypic (especially ultrastructural and chemotaxonomic data) characters has been emphasized for the major groups and selected taxa of the fungi, and the impact to fungal systematics and evolution is discussed. Our noteworthy studies and findings are: 1) polyphyly of the chytridiomycetes and zygomycetes, 2) phylogenetic origin of the entomophthoralean fungi includingBasidiobolus, 3) detection of a major new lineage “Archiascomycetes,” comprisingTaphrina, Protomyces andSaitoella, Schizosaccharomyces, andPneumocystis, within the Ascomycota, and its phylogenetic and evolutionary significance, 4) polyphyletic origins of species in the anamorphic genusGeosmithia, and 5) phylogenetic placement ofMixia osmundae, species correctly and incorrectly assigned to the genusTaphrina, and basidiomyceotus yeasts. The newest 18S rDNA sequence-based neighbor-joining trees of the Ascomycota are demonstrated. “Traditional studies of evolution have amply demonstrated that evolution at the phenotypic level is characterized by adaptation and opportunism, irregularity in pace, and inequality of rates among lineages. In contrast, studies of molecular evolution have revealed quite different features characterized by changes that are conservative in nature, random in pattern (independent of phenotypic characters), and quite regular in pace with equal rates among diverge [sic] lineages for a given protein”. (Kimura, M. 1983. The neutral theory of molecular evolution, pp. 308–309, Cambridge University Press, Cambridge.) Recipient of the 2nd Mycological Society of Japan's Excellent Achievement Award, 1998; the awarding lecture was given at the 42nd Annual Meeting of the Mycological Society of Japan, 16 May, 1998, Kyoto University, Kyoto. This review is based mainly on the publications intended for the Award.  相似文献   

11.
Molecular phylogenetic analyses have had a major impact on the classification of the green algal class Chlorophyceae, corroborating some previous evolutionary hypotheses, but primarily promoting new interpretations of morphological evolution. One set of morphological traits that feature prominently in green algal systematics is the absolute orientation of the flagellar apparatus in motile cells, which correlates strongly with taxonomic classes and orders. The order Sphaeropleales includes diverse green algae sharing the directly opposite (DO) flagellar apparatus orientation of their biflagellate motile cells. However, algae across sphaeroplealean families differ in specific components of the DO flagellar apparatus, and molecular phylogenetic studies often have failed to provide strong support for the monophyly of the order. To test the monophyly of Sphaeropleales and of taxa with the DO flagellar apparatus, we conducted a molecular phylogenetic study of 16 accessions representing all known families and diverse affiliated lineages within the order, with data from four plastid genes (psaA, psaB, psbC, rbcL) and one nuclear ribosomal gene (18S). Although single‐gene analyses varied in topology and support values, analysis of combined data strongly supported a monophyletic Sphaeropleales. Our results also corroborated previous phylogenetic hypotheses that were based on chloroplast genome data from relatively few taxa. Specifically, our data resolved Volvocales, algae possessing predominantly biflagellate motile cells with clockwise (CW) flagellar orientation, as the monophyletic sister lineage to Sphaeropleales, and an alliance of Chaetopeltidales, Chaetophorales, and Oedogoniales, orders having multiflagellate motile cells with distinct flagellar orientations involving the DO and CW forms.  相似文献   

12.
Members of the order Cladocera show remarkable morphological and ecological diversity. One of the most spectacular adaptive radiations in this group has involved species of the suborder Onychopoda, which have adopted a novel feeding strategy, predation, and have colonized habitats with a broad range of salinities. In order to evaluate the origins and systematics of this group, we derived a molecular phylogeny for its three component families including nine of 10 recognized genera based on three mitochondrial (mt) gene sequences: cytochrome c oxidase subunit I (COI), the ribosomal small and large subunits (12S and 16S) and one nuclear gene sequence: the small ribosomal subunit (18S). Maximum‐parsimony, maximum‐likelihood and neighbour‐joining phylogenetic analyses were largely congruent, supporting the monophyly of the suborder and each of its families. Comparative analyses of data based on total evidence and the conditional combination of the ribosomal genes produced relatively congruent patterns of phylogenetic affinity. By contrast, analyses of single gene results were inconsistent in recovering the monophyletic groups identified by the multigene analyses. Based on the reconstructed phylogeny, we discriminate among the existing hypotheses regarding the evolutionary history of the onychopods. We identify a prolonged episode of speciation from the Miocene to the Pleistocene with two pulses of diversification. We discuss our results with reference to the geological history of the Ponto‐Caspian basin, the region which fostered the onychopod radiation.  相似文献   

13.
Carrasco, P.A., Mattoni, C.I., Leynaud, G.C. & Scrocchi, G.J. (2012). Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). —Zoologica Scripta, 41, 109–124. South American bothropoids comprise a monophyletic and greatly diverse group of pitvipers that were initially included in the genus Bothrops and later assigned to five genera. Until recently, most phylogenetic analyses of bothropoids used exclusively mitochondrial DNA sequences, whereas few of them have included morphological traits. Moreover, the systematic affinities of some species remain unclear. In this study, we performed a parsimony analysis of morphological data obtained from the examination of 111 characters related to lepidosis, colour pattern, osteology, and hemipenial morphology of 35 of the 48 species that compose the bothropoid group. The morphological data analysed contain novel information about several species, including the incertae sedis. Morphology was analysed separately and combined with 2393 molecular characters obtained from published sequences of four mitochondrial genes. Five characters of the ecology were also included. A sensitivity analysis was performed using different weighting criteria for the characters. The congruence among different sources of evidence was evaluated through partitioned and total evidence analyses, the analyses of reduced datasets and the use of incongruence length difference test. With few exceptions, results showed groups of species similar to those obtained in previous studies; however, incongruences between morphological and molecular characters, and within the molecular partition, were revealed. This conflict affects the relationship between particular groups of species, leading to alternative phylogenetic hypotheses for bothropoids: hierarchical radiation or two major lineages within the group. The results also showed that Bothrops sensu stricto is paraphyletic. We discuss previous taxonomic approaches and, considering both phylogenetic hypotheses, we propose an arrangement that rectifies the paraphyly of Bothrops: maintaining Bothrocophias, assigning Bothrops andianus to this genus; and recognising the sister clade as Bothrops, synonymising Bothriopsis, Bothropoides and Rhinocerophis.  相似文献   

14.
Uromyces appendiculatus, inclusive of three varieties, is distinguished from U. vignae primarily by the position of urediniospore germ pores and putative host specificity. However, opinions concerning these morphological and physiological features as taxonomic characters have varied greatly, and distinction of these species has often been confused. To clarify the taxonomy of these two species, morphological features of urediniospores and teliospores of 225 rust fungus specimens on species of Phaseolus, Vigna, Apios, Lablab, and Dunbaria were examined by light microscopy and scanning electron microscopy. Forty-five specimens were subjected to molecular phylogenetic analyses. As a result, the position of germ pores in urediniospores and the teliospore-wall thickness were considered as good characters to separate three morphological groups. In molecular analyses, the specimens fell into two and three clades based on the nucleotide sequence at D1/D2 domain of LSU rDNA and ITS regions, respectively. One of the D1/D2 clades corresponded to one morphological group whereas another D1/D2 clade included two other morphological groups. In contrast, each of the three ITS clades corresponded to a separate morphological group. Neither morphological groups nor molecular clades were host limited. It is suggested that the three morphological groups that corresponded to three distinct ITS clades constitute distinct species.Contribution no. 186 from the Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

15.
Albinaria (Gastropoda, Clausiliidae) is a pulmonate genus distributed around the north-eastern coasts of the Mediterranean. It is the most 'speciose' genus within the family of Clausiliidae, exhibiting a high degree of morphological and genetic differentiation, and serving as a model for several ecological, systematics and evolutionary studies. Nevertheless, many aspects remain uncertain mainly due to the large number of taxa whose classification has not yet been evaluated with solid synapomorphic characters. Thirty-one morphological species are currently recognized on the island of Crete and its satellite islets. Four of them (A. retusa, A. torticollis, A. jaeckeli, and A. teres) are distributed on the island of Dia (north of Crete); the first three are island endemics. Here, we combined mitochondrial and nuclear DNA information and Bayesian and Maximum Likelihood approaches to evaluate the phylogenetic relationships, and assess the genetic distinctiveness and cohesiveness of all described species of Dia Island. The produced phylogeny was not congruent with the morphological species, demonstrating a more complex pattern of speciation and diversification. Although each island endemic constitutes a monophyletic lineage, the number of island endemic species could be greater than the three currently recognized species so far (A. retusa, A. torticollis, and A. jaeckeli), since a newly discovered lineage (north-western part of the island), that morphologically differs from the populations of A. torticollis in the eastern part, and genetically is more closely related to A. jaeckeli, could be elevated to the species level. Considering the fourth species found on the island of Dia, A. teres is genetically highly variable, showing low geographic structuring due to either long-distance gene flow or retained ancestral polymorphisms, or a combination of both. Further work (analysis of more specimens and DNA data) both from Dia and Crete is indispensable in order to shed light on aspects of the evolutionary history of the genus in Dia.  相似文献   

16.
The sturgeon subfamily Scaphirhynchinae contains two genera of obligate freshwater sturgeon: Scaphirhynchus and Pseudoscaphirhynchus, from North America and Central Asia, respectively. Both genera contain morphologically variable species. A novel data set containing multiple individuals representing four diagnosable morphological variants for two species of Pseudoscaphirhynchus, P. hermanni and P. kaufmanni, was generated. These data were used to test taxonomic hypotheses of monophyly for the subfamily Scaphirhynchinae, monophyly of both Scaphirhynchus and Pseudoscaphirhynchus, monophyly of P. hermanni and P. kaufmanni, and monophyly of the recognized morphological variants. Monophyly of the subfamily Scaphirhynchinae is consistently rejected by all phylogenetic reconstruction methodologies with the molecular character set while monophyly of both river sturgeon genera is robustly supported. The molecular data set also rejects hypotheses of monophyly for sampled species of Pseudoscaphirhynchus as well as monophyly for the recognized intraspecific morphological variants. Interestingly both Scaphirhynchus and Pseudoscaphirhynchus demonstrate the same general pattern in reconstructed topologies; a lack of phylogenetic structure in the clade with respect to recognized diversity. Despite rejection of monophyly for the subfamily Scaphirhynchinae with molecular data, reconstructed hypotheses from morphological character sets consistently support monophyly for this subfamily. Disparities among the data sets, as well as reasons for rejection of monophyly for Scaphirhynchinae and species of Scaphirhynchus and Pseudoscaphirhynchus with molecular characters are examined and a decreased rate of molecular evolution is found to be most consistent with the data.  相似文献   

17.
Evolutionary relationships within and between the marine hydrophiine sea snake groups have been inferred primarily using morphological characters, and two major groups traditionally are recognized. The Aipysurus group comprises nine species in two genera, and the taxonomically chaotic Hydrophis group comprises as many as 40 species, of which 27 are generally allocated to the genus Hydrophis and 13 to ten additional genera. In addition to these two major groups are three putatively ‘primitive’ monotypic genera, Hydrelaps darwiniensis, Ephalophis greyi and Parahydrophis mertoni. The present study investigated the evolutionary relationships of 23 representative species of marine hydrophiines, comprising 15 species from the Hydrophis group, six species from the Aipysurus group, and H. darwiniensis and P. mertoni, to address two broad aims. First, the aim was to provide a robust phylogeny for sea snakes to test previous phylogenetic hypotheses based on morphology, and thus provide some taxonomic stability to the group. Second, there was interest in evaluating the hypothesis that the Hydrophis group might represent a rapidly diverged adaptive radiation. A large mitochondrial DNA data set based on the cytochrome b gene (1080 bp, 401 parsimony informative) and the 16S rRNA gene (510 bp, 57 parsimony informative) was assembled and these data were analysed using parsimony, maximum‐likelihood and Bayesian approaches. All analyses yielded virtually the same optimal tree, confirming that hydrophiine sea snakes comprise at least three lineages. The Aipysurus group formed a strongly supported and well‐resolved monophyletic clade. The Hydrophis group also formed a strongly supported clade; however, resolution among the genera and species was very poor. Hydrelaps darwiniensis and P. mertoni formed a sister clade to the Hydrophis lineage. Our phylogeny was used to test the validity of previous taxonomic and phylogenetic hypotheses, and to demonstrate that the genus Hydrophis is not monophyletic. Genetic diversity relative to phenotypic diversity is four to seven times greater in the Hydrophis lineage compared with the Aipysurus lineage. The topology of our phylogenetic hypothesis, combined with the levels of genetic divergence relative to morphological diversity, demonstrate that the Hydrophis lineage represents a rapidly diverged adaptive radiation. The data are consistent with the hypothesis that this adaptive radiation may be due to historical sea level fluctuations that have isolated populations and promoted speciation. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 89 , 523–539.  相似文献   

18.
Abstract. The aim of the present study was to investigate the phylogeny, systematics and evolution of the mimetic wing patterns of Eterusia, a day-flying moth genus that exhibits great morphological diversity, as well as the highest insular differentiation in eastern Asia and which has the most chaotic taxonomic history in the family Zygaenidae. We examined the wing patterns of the insects involved using visible and ultraviolet light (both reflectance and fluorescence). The phylogeny of thirty-four taxa, including all the recognized species of Eterusia plus two species of Soritia as outgroups, was reconstructed based on eighty adult morphological characters, including forty-one derived from colour patterns. Phylogenetic relationships based on the whole dataset revealed that (1) the most current concept of Eterusia is monophyletic, and (2) different types of mimetic pattern show different levels of phylogenetic conservation. To investigate the evolution of their colour patterns we inactivated all the relevant characters and reconstructed another phylogeny, which was found to differ significantly from the one based on the whole character set in the position of the E. risa species group. We used these phylogenetic hypotheses to test evolutionary predictions based on conventional Müllerian mimicry and quasi-Batesian mimicry dynamics. The results of permutation–tail–probability tests showed that the coloration characters are phylogenetically conserved, thus justifying a Müllerian interpretation. However, when comparing the observed topologies with hypothetical trees constrained to fit perfect Müllerian or quasi-Batesian scenarios using the Kishino–Hasegawa test, the observed phylogenies were more consistent with the phylogenetic prediction of quasi-Batesian mimicry. Therefore, we consider that applying these two phylogenetic methods to justify mimicry models may not always be practical. Finally, the taxonomy of Eterusia is revised. In total, two new species (E. austrochinensis, E. guanxiana), one new subspecies (E. risa palawanica) and four new synonyms (E. lativitta and E. fasciata of E. sublutea, E. coelestina of E. subcyanea, E. angustipennis gaedei of E. angustipennis angustipennis) are established.  相似文献   

19.
Although resolving phylogenetic relationships and establishing species limits are primary goals of systematics, these tasks remain challenging at both conceptual and analytical levels. Here, we integrated genomic and phenotypic data and employed a comprehensive suite of coalescent‐based analyses to develop and evaluate competing phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers (Chorthippus binotatus group) composed of two species and eight putative subspecies. To resolve the evolutionary relationships within this complex, we first evaluated alternative phylogenetic hypotheses arising from multiple schemes of genomic data processing and contrasted genetic‐based inferences with different sources of phenotypic information. Second, we examined the importance of number of loci, demographic priors, number and kind of phenotypic characters and sex‐based trait variation for developing alternative species delimitation hypotheses. The best‐supported topology was largely compatible with phenotypic data and showed the presence of two clades corresponding to the nominative species groups, one including three well‐resolved lineages and the other comprising a four‐lineage polytomy and a well‐differentiated sister taxon. Integrative species delimitation analyses indicated that the number of employed loci had little impact on the obtained inferences but revealed the higher power provided by an increasing number of phenotypic characters and the usefulness of assessing their phylogenetic information content and differences between sexes in among‐taxa trait variation. Overall, our study highlights the importance of integrating multiple sources of information to test competing phylogenetic hypotheses and elucidate the evolutionary history of species complexes representing early stages of divergence where conflicting inferences are more prone to appear.  相似文献   

20.
Advances in potter wasp systematics have been achieved recently, with classificatory changes resulting from analyses based upon large scale molecular datasets. For the Neotropics, recent hypotheses point to the occurrence of an exclusive clade recognized within the tribe Eumenini. In this group, several contributions regarding taxonomy and systematics have been proposed in the last five years, including the genus Alphamenes. This taxon contains seven described species whose distribution is exclusively Neotropical. Females are morphologically homogeneous, and characters related to copulatory organs are useful in male diagnosis. This contribution forms the first phylogenetic approach to include all species of Alphamenes, hence the first to strongly test for group monophyly. Our cladistic results recovered Alphamenes as a monophyletic group supported by male genital features. Relationships among included species also rely upon genitalic characters, highlighting the importance of these attributes for eumenine systematics. Recent phylogenetic investigations applied to the Neotropical fauna of potter wasps represent desirable advancements towards a natural classification for the group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号