首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BAM is a conserved molecular machine, the central component of which is BamA. Orthologues of BamA are found in all Gram‐negative bacteria, chloroplasts and mitochondria where it is required for the folding and insertion of β‐barrel containing integral outer membrane proteins (OMPs) into the outer membrane. BamA binds unfolded β‐barrel precursors via the five polypeptide transport‐associated (POTRA) domains at its N‐terminus. The C‐terminus of BamA folds into a β‐barrel domain, which tethers BamA to the outer membrane and is involved in OMP insertion. BamA orthologues are found in all Gram‐negative bacteria and appear to function in a species‐specific manner. Here we investigate the nature of this species‐specificity by examining whether chimeric Escherichia coli BamA fusion proteins, carrying either the β‐barrel or POTRA domains from various BamA orthologues, can functionally replace E. coli BamA. We demonstrate that the β‐barrel domains of many BamA orthologues are functionally interchangeable. We show that defects in the orthologous POTRA domains can be rescued by compensatory mutations within the β‐barrel. These data reveal that the POTRA and barrel domains must be precisely aligned to ensure efficient OMP insertion.  相似文献   

2.
BamA interacts with the BamBCDE lipoproteins, and together they constitute the essential β-barrel assembly machine (BAM) of Escherichia coli. The simultaneous absence of BamB and BamE confers a conditional lethal phenotype and a severe β-barrel outer membrane protein (OMP) biogenesis defect. Without BamB and BamE, wild-type BamA levels are significantly reduced, and the folding of the BamA β-barrel, as assessed by the heat-modifiability assay, is drastically compromised. Single-amino-acid substitutions in the β-barrel domain of BamA improve both bacterial growth and OMP biogenesis in a bamB bamE mutant and restore BamA levels close to the BamB(+) BamE(+) level. The substitutions alter BamA β-barrel folding, and folding in the mutants becomes independent of BamB and BamE. Remarkably, BamA β-barrel alterations also improve OMP biogenesis in cells lacking the major periplasmic chaperone, SurA, which, together with BamB, is thought to facilitate the transfer of partially folded OMPs to the soluble POTRA (polypeptide-transport-associated) domain of BamA. Unlike the bamB bamE mutant background, the absence of BamB or SurA does not affect BamA β-barrel folding. Thus, substitutions in the outer membrane-embedded BamA β-barrel domain overcome OMP biogenesis defects that occur at the POTRA domain of BamA in the periplasm. Based on the structure of FhaC, the altered BamA residues are predicted to lie on a highly conserved loop that folds inside the β-barrel and in regions pointing outside the β-barrel, suggesting that they influence BamA function by both direct and indirect mechanisms.  相似文献   

3.
The outer membrane (OM) of the pathogenic diderm spirochete, Borrelia burgdorferi, contains integral β‐barrel outer membrane proteins (OMPs) in addition to its numerous outer surface lipoproteins. Very few OMPs have been identified in B. burgdorferi, and the protein machinery required for OMP assembly and OM localization is currently unknown. Essential OM BamA proteins have recently been characterized in Gram‐negative bacteria that are central components of an OM β‐barrel assembly machine and are required for proper localization and insertion of bacterial OMPs. In the present study, we characterized a putative B. burgdorferi BamA orthologue encoded by open reading frame bb0795. Structural model predictions and cellular localization data indicate that the B. burgdorferi BB0795 protein contains an N‐terminal periplasmic domain and a C‐terminal, surface‐exposed β‐barrel domain. Additionally, assays with an IPTG‐regulatable bb0795 mutant revealed that BB0795 is required for B. burgdorferi growth. Furthermore, depletion of BB0795 results in decreased amounts of detectable OMPs in the B. burgdorferi OM. Interestingly, a decrease in the levels of surface‐exposed lipoproteins was also observed in the mutant OMs. Collectively, our structural, cellular localization and functional data are consistent with the characteristics of other BamA proteins, indicating that BB0795 is a B. burgdorferi BamA orthologue.  相似文献   

4.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

5.
The Cpx and σE regulons help maintain outer membrane integrity; the Cpx pathway monitors the biogenesis of cell surface structures, such as pili, while the σE pathway monitors the biogenesis of β‐barrel outer membrane proteins (OMPs). In this study we revealed the importance of the Cpx regulon in the event of β‐barrel OMP mis‐assembly, by utilizing mutants expressing either a defective β‐barrel OMP assembly machinery (Bam) or assembly defective β‐barrel OMPs. Analysis of specific mRNAs showed that ΔcpxR bam double mutants failed to induce degP expression beyond the wild type level, despite activation of the σE pathway. The synthetic conditional lethal phenotype of ΔcpxR in mutant Bam or β‐barrel OMP backgrounds was reversed by wild type DegP expressed from a heterologous plasmid promoter. Consistent with the involvement of the Cpx regulon in the event of aberrant β‐barrel OMP assembly, the expression of cpxP, the archetypal member of the cpx regulon, was upregulated in defective Bam backgrounds or in cells expressing a single assembly‐defective β‐barrel OMP species. Together, these results showed that both the Cpx and σE regulons are required to reduce envelope stress caused by aberrant β‐barrel OMP assembly, with the Cpx regulon principally contributing by controlling degP expression.  相似文献   

6.
The BamA protein of Escherichia coli plays a central role in the assembly of β-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane β-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.  相似文献   

7.
β‐barrel‐shaped outer membrane proteins (OMPs) ensure regulated exchange of molecules across the cell‐wall of Gram‐negative bacteria. They are synthesized in the cytoplasm and translocated across the plasma membrane via the SEC translocon. In the periplasm, several proteins participate in the transfer of OMPs to the outer membrane‐localized complex catalyzing their insertion. This process has been described in detail for proteobacteria and some molecular components are conserved in cyanobacteria. For example, Omp85 proteins that catalyze the insertion of OMPs into the outer membrane exist in cyanobacteria as well. In turn, SurA and Skp involved in OMP transfer from plasma membrane to Omp85 in E. coli are likely replaced by Tic22 in cyanobacteria. We describe that anaTic22 functions as periplasmic holdase for OMPs in Anabaena sp. PCC 7120 and provide evidence for the process of substrate delivery to anaOmp85. AnaTic22 binds to the plasma membrane with specificity for phosphatidylglycerol and monogalactosyldiacylglycerol. Substrate recognition induces membrane dissociation and interaction with the N‐terminal POTRA domain of Omp85. This leads to substrate release by the interaction with a proline‐rich domain and the first POTRA domain of Omp85. The order of events during OMP transfer from plasma membrane to Omp85 in cyanobacteria is discussed.  相似文献   

8.
Folding and insertion of β-barrel outer membrane proteins (OMPs) is essential for Gram-negative bacteria. This process is mediated by the multiprotein complex BAM, composed of the essential β-barrel OMP BamA and four lipoproteins (BamBCDE). The periplasmic domain of BamA is key for its function and contains five "polypeptide transport-associated" (POTRA) repeats. Here, we report the crystal structure of the POTRA4-5 tandem, containing the essential for BAM complex formation and cell viability POTRA5. The domain orientation observed in the crystal is validated by solution NMR and SAXS. Using previously determined structures of BamA POTRA1-4, we present a spliced model of the entire BamA periplasmic domain validated by SAXS. Solution scattering shows that conformational flexibility between POTRA2 and 3 gives rise to compact and extended conformations. The length of BamA in its extended conformation suggests that the protein may bridge the inner and outer membranes across the periplasmic space.  相似文献   

9.
The β-barrel assembly machinery (BAM) mediates folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. BAM is a five-protein complex consisting of the β-barrel OMP BamA and lipoproteins BamB, -C, -D, and -E. High resolution structures of all the individual BAM subunits and a BamD-BamC complex have been determined. However, the overall complex architecture remains elusive. BamA is the central component of BAM and consists of a membrane-embedded β-barrel and a periplasmic domain with five polypeptide translocation-associated (POTRA) motifs thought to interact with the accessory lipoproteins. Here we report the crystal structure of a fusion between BamB and a POTRA3–5 fragment of BamA. Extended loops 13 and 17 protruding from one end of the BamB β-propeller contact the face of the POTRA3 β-sheet in BamA. The interface is stabilized by several hydrophobic contacts, a network of hydrogen bonds, and a cation-π interaction between BamA Tyr-255 and BamB Arg-195. Disruption of BamA-BamB binding by BamA Y255A and probing of the interface by disulfide bond cross-linking validate the physiological relevance of the observed interface. Furthermore, the structure is consistent with previously published mutagenesis studies. The periplasmic five-POTRA domain of BamA is flexible in solution due to hinge motions in the POTRA2–3 linker. Modeling BamB in complex with full-length BamA shows BamB binding at the POTRA2–3 hinge, suggesting a role in modulation of BamA flexibility and the conformational changes associated with OMP folding and insertion.  相似文献   

10.
The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. The C-terminus of BamA contains a β-barrel domain, which tethers BamA to the outer membrane and is also thought to be involved in OMP insertion. Here we mutagenize BamA using linker scanning mutagenesis and demonstrate that all five POTRA domains are essential for BamA protein function in our experimental system. Furthermore, we generate a homology based model of the BamA β-barrel and test our model using insertion mutagenesis, deletion analysis and immunofluorescence to identify β-strands, periplasmic turns and extracellular loops. We show that the surface-exposed loops of the BamA β-barrel are essential.  相似文献   

11.
《Biophysical journal》2022,121(17):3242-3252
BamA, the core component of the β-barrel assembly machinery complex, is an integral outer-membrane protein (OMP) in Gram-negative bacteria that catalyzes the folding and insertion of OMPs. A key feature of BamA relevant to its function is a lateral gate between its first and last β-strands. Opening of this lateral gate is one of the first steps in the asymmetric-hybrid-barrel model of BamA function. In this study, multiple hybrid-barrel folding intermediates of BamA and a substrate OMP, EspP, were constructed and simulated to better understand the model’s physical consequences. The hybrid-barrel intermediates consisted of the BamA β-barrel and its POTRA5 domain and either one, two, three, four, five, or six β-hairpins of EspP. The simulation results support an asymmetric-hybrid-barrel model in which the BamA N-terminal β-strand forms stronger interactions with the substrate OMP than the C-terminal β-strand. A consistent “B”-shaped conformation of the final folding intermediate was observed, and the shape of the substrate β-barrel within the hybrid matched the shape of the fully folded substrate. Upon further investigation, inward-facing glycines were found at sharp bends within the hybrid and fully folded β-barrels. Together, the data suggest an influence of sequence on shape of the substrate barrel throughout the OMP folding process and of the fully folded OMP.  相似文献   

12.
The periplasmic chaperone Skp has long been implicated in the assembly of outer membrane proteins (OMPs) in Escherichia coli. It has been shown to interact with unfolded OMPs, and the simultaneous loss of Skp and the main periplasmic chaperone in E. coli, SurA, results in synthetic lethality. However, a Δskp mutant displays only minor OMP assembly defects, and no OMPs have been shown to require Skp for their assembly. Here, we report a role for Skp in the assembly of the essential OMP LptD. This role may be compensated for by other OMP assembly proteins; in the absence of both Skp and FkpA or Skp and BamB, LptD assembly is impaired. Overexpression of SurA does not restore LptD levels in a Δskp ΔfkpA double mutant, nor does the overexpression of Skp or FkpA restore LptD levels in the ΔsurA mutant, suggesting that Skp acts in concert with SurA to efficiently assemble LptD in E. coli. Other OMPs, including LamB, are less affected in the Δskp ΔfkpA and Δskp bamB::kan double mutants, suggesting that Skp is specifically necessary for the assembly of certain OMPs. Analysis of an OMP with a domain structure similar to that of LptD, FhuA, suggests that common structural features may determine which OMPs require Skp for their assembly.  相似文献   

13.
The Omp85 family of proteins has been found in all Gram-negative bacteria and even several eukaryotic organisms. The previously uncharacterized Escherichia coli member of this family is YaeT. The results of this study, consistent with previous Omp85 studies, show that the yaeT gene encodes for an essential cellular function. Direct examinations of the outer membrane fraction and protein assembly revealed that cells depleted for YaeT are severely defective in the biogenesis of outer membrane proteins (OMPs). Interestingly, assemblies of the two distinct groups of OMPs that follow either SurA- and lipopolysaccharide-dependent (OmpF/C) or -independent (TolC) folding pathways were affected, suggesting that YaeT may act as a general OMP assembly factor. Depletion of cells for YaeT led to the accumulation of OMPs in the fraction enriched for periplasm, thus indicating that YaeT facilitates the insertion of soluble assembly intermediates from the periplasm to the outer membrane. Our data suggest that YaeT's role in the assembly of OMPs is not mediated through a role in lipid biogenesis, as debated for Omp85 in Neisseria, thus advocating a conserved OMP assembly function of Omp85 homologues.  相似文献   

14.
The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the β‐barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the β‐strands of FimD, and do so selectively. Chemical cross‐linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.  相似文献   

15.
Endo T  Kawano S  Yamano K 《EMBO reports》2011,12(2):94-95
A study recently published in EMBO reports solves the solution structure of E. coli BamE, thus providing the basis for a better understanding of the mechanism of β-barrel assembly in bacterial and mitochondrial outer membranes.EMBO Rep (2011) advance online publication. doi: 10.1038/embor.2010.202β-barrel membrane proteins are found exclusively in the outer membrane of Gram-negative bacteria and the outer membranes of eukaryotic organelles of prokaryotic origin, mitochondria and chloroplasts. In contrast to the inner membrane, the bacterial outer membrane is an asymmetrical bilayer that consists mainly of lipopolysaccharides in the outer leaflet and phospholipids in the inner leaflet. Bacterial β-barrel outer membrane proteins (OMPs) mediate many cellular functions, for example, passive or selective diffusion of small molecules through the β-barrel pores across the outer membrane. By contrast, only a few mitochondrial β-barrel outer membrane proteins (MBOMPs) have been identified so far. The central machineries that mediate insertion and assembly of OMPs/MBOMPs are the β-barrel assembly machine (BAM) complex in the bacterial outer membrane and the topogenesis of outer-membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex in the mitochondrial outer membrane (Knowles et al, 2009; Endo & Yamano, 2010; Stroud et al, 2010; Fig 1). However, the molecular mechanisms of β-barrel protein topogenesis in bacterial and mitochondrial outer membranes remain poorly understood.Open in a separate windowFigure 1β-barrel protein assembly in bacterial and mitochondrial outer membranes. (A) Bacteria. Ribbon models of the structures of the Sec complex, SurA, BamA (Clantin et al, 2007; Kim et al, 2007), BamE and OMP. The upper and lower inserts show the surface of BamE (residues 20–108; viewed after approximately 90° rotation of the ribbon model around the horizontal axis toward the reader). Residues important for BamD binding are shown in red and residues with NMR signals that were perturbed by BamD binding are shown in yellow. The residue (Phe 74) important for PG binding is shown in red and the residues with NMR signals that were perturbed by PG binding are shown in yellow. (B) Mitochondria. Ribbon models were drawn for the structures of small Tim and MBOMP. IM, inner membrane; IMS, intermembrane space; MBOMP, mitochondrial β-barrel outer membrane protein; OM, outer membrane; OMP, outer membrane protein; PG, phosphatidylglycerol; POTRA, polypeptide transport-associated domain.Bacterial OMPs are synthesized in the cytosol as precursor proteins with an amino-terminal signal sequence that guides the proteins to the Sec machinery for crossing the inner membrane and is cleaved off in the periplasm. Periplasmic chaperones then escort OMPs through the aqueous periplasmic space in a partly unfolded state. On reaching the outer membrane, OMPs assemble into a β-barrel structure and insert into the outer membrane with the help of the BAM complex. The bacterial OMP insertion pathway can be compared to the assembly pathway of MBOMPs from the mitochondrial intermembrane space into the outer membrane. MBOMPs are synthesized in the cytosol and imported into the intermembrane space by the outer membrane translocator TOM40. The subsequent chaperone-mediated escort across the intermembrane space and insertion into the outer membrane by the TOB complex is similar to the OMP assembly process. Notably, the BAM and TOB complexes share the homologous β-barrel proteins BamA and Tob55/Sam50, respectively, as the central components of their insertion machineries. The BAM complex in Escherichia coli consists of BamA (YaeT/Omp85) and four accessory lipoproteins: BamB (YfgL), BamC (NlpB), BamD (YfiO) and BamE (SmpA). BamA and BamD are essential for cell growth, yet deletion of dispensable BamB, BamC or BamE leads to outer membrane defects manifested in hypersensitivity to antibiotics. Although BamAB and BamCDE can form distinct subcomplexes, they become functional only after formation of the entire BAM complex with all five subunits (Hagan et al, 2010).In this issue of EMBO reports, Knowles et al (2011) solve the nuclear magnetic resonance (NMR) solution structure of E. coli BamE, which sheds light on the roles of one of the Bam subunits in β-barrel protein assembly. The structure of BamE consists of a three-stranded antiparallel β-sheet packed against a pair of α-helices (Fig 1).As the ΔbamE mutant cannot grow in the presence of vancomycin, the authors identify functionally important residues of BamE by testing the effects of amino-acid substitutions in BamE on its inability to complement the growth defects of ΔbamE, without destabilizing BamE itself. Many of the identified residues are conserved among BamE proteins from different organisms and map to a single surface area on BamE. Interestingly, NMR signals of the residues around this region are sensitive to the addition of micelles containing the lipid phosphatidylglycerol, but not phosphatidylethanolamine or cardiolipin. In parallel, the authors analyse perturbation of the NMR spectra of BamE after the addition of purified BamB, C and D proteins. Only BamD affects the NMR spectra of BamE, and the BamD interacting region of BamE is found to overlap partly with the residues involved in phosphatidylglycerol binding. As the addition of BamD and phosphatidylglycerol have different effects on the NMR spectra of BamE, the binding of BamD and phosphatidylglycerol to BamE seem to take place simultaneously. What is the biological relevance of the observed interactions of BamE with both BamD and phosphatidylglycerol? As phosphatidylglycerol was found to help the insertion of OMPs into lipid liposomes (Patel et al, 2009), BamE might recruit the BAM complex through BamD to phosphatidylglycerol-rich regions in the outer membrane, or might directly recruit phosphatidylglycerol to form assembly points for OMP insertion and folding.What are the roles of other subunits of the BAM complex in β-barrel protein assembly? The essential subunit of the E. coli BAM complex BamA consists of two domains: the N-terminal polypeptide transport-associated (POTRA) domain repeat in the periplasm and the carboxy-terminal β-barrel domain, embedded in the outer membrane. The number of POTRA domains ranges from one to five in BamA homologues from different organisms. Of these POTRA domains, the one nearest to the C-terminal that is most connected to the β-barrel domain is essential for cell viability and its deletion leads to disassembly of the BAM complex (Kim et al, 2007). Structural studies of the E. coli BamA POTRA domains suggest that each POTRA domain has a common fold, whereas conformational rigidity might differ between inter-domain linkers (Gatzeva-Topalova et al, 2010; Fig 1). As individual POTRA domains have some affinity for unfolded substrate proteins, the periplasmic tandem POTRA repeat probably provides several substrate binding sites that slide the substrate progressively towards the BamA β-barrel domain. The β-barrel domain of BamA probably functions as a scaffold to facilitate the formation of β-strands, possibly through β-augmentation and subsequent spontaneous membrane insertion of the β-barrel. Yet, it is not clear whether this cradle for β-strand formation is provided by the pore formed within the monomer or oligomeric forms of the BamA β-barrel domain. Alternatively, membrane insertion and folding of OMPs might take place at the interface between BamA and the outer membrane lipid bilayer.How much of the β-barrel assembly process is conserved during the evolution of mitochondria from Gram-negative bacteria? Although the central subunits BamA and Tob55 of the BAM and TOB complexes are conserved, other subunits of these complexes are unrelated to each other. The POTRA domains of BamA are essential for recognition and assembly of bacterial OMPs, whereas that of Tob55 is dispensable for MBOMP assembly in the mitochondrial outer membrane. Nevertheless, the mitochondrial TOB complex facilitates assembly of bacterial OMPs at low efficiency (Walther et al, 2009) and, in turn, the bacterial BAM complex can mediate assembly of mitochondrial porin. Therefore, the basic mechanism of β-barrel assembly in the outer membranes of bacteria and mitochondria seems to be conserved. High-resolution structures of each component of the BAM and TOB complexes—including that of BamE in this study—will thus provide the basis for a better understanding of the mechanism of β-barrel assembly in evolutionarily related bacterial and mitochondrial outer membranes.  相似文献   

16.
Little is known on how β‐barrel proteins are assembled in the outer membrane (OM) of Gram‐negative bacteria. SurA has been proposed to be the primary chaperone escorting the bulk mass of OM proteins across the periplasm. However, the impact of SurA deletion on the global OM proteome has not been determined, limiting therefore our understanding of the function of SurA. By using a differential proteomics approach based on 2‐D LC‐MSn, we compared the relative abundance of 64 OM proteins, including 23 β‐barrel proteins, in wild‐type and surA strains. Unexpectedly, we found that the loss of SurA affects the abundance of eight β‐barrel proteins. Of all the decreased proteins, FhuA and LptD are the only two for which the decreased protein abundance cannot be attributed, at least in part, to decreased mRNA levels in the surA strain. In the case of LptD, an essential protein involved in OM biogenesis, our data support a role for SurA in the assembly of this protein and suggest that LptD is a true SurA substrate. Based on our results, we propose a revised model in which only a subset of OM proteins depends on SurA for proper folding and insertion in the OM.  相似文献   

17.
Many members of the Omp85 family of proteins form essential β-barrel outer membrane protein (OMP) biogenesis machinery in Gram-negative bacteria, chloroplasts, and mitochondria. In Escherichia coli, BamA, a member of the Omp85 family, folds into an outer membrane-embedded β-barrel domain and a soluble periplasmic polypeptide-transport-associated (POTRA) domain. Although the high-resolution structures of only the BamA POTRA domain of E. coli are available, the crystal structure of FhaC, an Omp85 family member and a component of the two-partner secretion system in Bordetella pertussis, suggests that the BamA β-barrel likely folds into a 16-stranded β-barrel. The FhaC β-barrel is occluded by an N-terminal α-helix and a large β-barrel loop, L6, which carries residues that are highly conserved among the Omp85 family members. Deletion of L6 in FhaC did not affect its biogenesis but abolished its secretion function. In this study, we tested the hypothesis that the conserved residues of the putative L6 loop, which presumably folds back into the lumen of the BamA β-barrel like the FhaC counterpart, play an important role in OMP and/or BamA biogenesis. The conserved (641)RGF(643) residues of L6 were either deleted or replaced with alanine in various permutations. Phenotypic and biochemical characterization of various BamA L6 mutants revealed that the conserved RGF residues are critical for OMP biogenesis. Moreover, three BamA L6 alterations, ΔRGF, AAA, and AGA, produced a conditional lethal phenotype, concomitant with severely reduced BamA levels and folding defects. Thus, the conserved (641)RGF(643) residues of the BamA L6 loop are important for BamA folding and biogenesis.  相似文献   

18.
In Gram‐negative bacteria, β‐barrel proteins are integrated into the outer membrane by the β‐barrel assembly machinery, with key components of the machinery being the Omp85 family members BamA and TamA. Recent crystal structures and cryo‐electron microscopy show a diverse set of secretion pores in Gram‐negative bacteria, with α‐helix (Wza and GspD) or β‐strand (CsgG) transmembrane segments in the outer membrane. We developed assays to measure the assembly of three distinct secretion pores that mediate protein (GspD), curli fibre (CsgG) and capsular polysaccharide (Wza) secretion by bacteria and show that depletion of BamA and TamA does not diminish the assembly of Wza, GspD or CsgG. Like the well characterised pilotins for GspD and other secretins, small periplasmic proteins enhance the assembly of the CsgG β‐barrel. We discuss a model for integral protein assembly into the bacterial outer membrane, focusing on the commonalities and differences in the assembly of Wza, GspD and CsgG.  相似文献   

19.
The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.  相似文献   

20.
Omp85 transporters mediate protein insertion into, or translocation across, membranes. They have a conserved architecture, with POTRA domains that interact with substrate proteins, a 16‐stranded transmembrane β barrel, and an extracellular loop, L6, folded back in the barrel pore. Here using electrophysiology, in vivo biochemical approaches and electron paramagnetic resonance, we show that the L6 loop of the Omp85 transporter FhaC changes conformation and modulates channel opening. Those conformational changes involve breaking the conserved interaction between the tip of L6 and the inner β‐barrel wall. The membrane‐proximal POTRA domain also exchanges between several conformations, and the binding of FHA displaces this equilibrium. We further demonstrate a dynamic, physical communication between the POTRA domains and L6, which must take place via the β barrel. Our findings thus link all three essential components of Omp85 transporters and indicate that they operate in a concerted fashion in the transport cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号