首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
We examine the origin and diversification of Philippine bulbuls using a phylogenetic framework. Maximum likelihood and Bayesian methods are used to construct trees from DNA sequences of two mitochondrial and two nuclear genes obtained from 11 Philippine bulbul species as well as 32 other Asian and African taxa. The study finds eight independent colonization events of bulbuls to the Philippines, including one clade comprising Philippine members of the genus Ixos that underwent extensive diversification within the archipelago. Each Philippine clade of bulbuls invaded either the Palawan region or the oceanic islands of the Philippines, but not both. Genetic data reveal at least five lineages that warrant recognition as full species. This study underscores how Philippine avian diversity is currently underestimated and highlights the need for further phylogenetic studies in other Philippine bird groups.  相似文献   

2.
Islands have long-attracted scientists because of their relatively simple biotas and stark geographic boundaries. However, for many islands and archipelagos, this simplicity may be overstated because of methodological and conceptual limitations when these biotas were described. One archipelago that has received relatively little recent attention is the Philippine islands. Although much of its biota was documented long ago, taxonomic revision and evolutionary study has been surprisingly scarce, and only a few molecular phylogenetic studies are beginning to appear. We present a molecular phylogeny and taxonomic revision for the Philippine fantails (Aves: Rhipidura) using nuclear and mitochondrial DNA sequences. Our results suggest that current taxonomy underestimates diversity in the group. Some morphologically distinct subspecies warrant species status, whereas one was indistinguishable genetically and morphologically and should not be retained. A few taxa require additional sampling for thorough taxonomic assessment. Patterns of diversity within Philippine Rhipidura mostly corroborate predictions of the Pleistocene aggregate island complex (PAIC) hypothesis, in which diversity is expected to be partitioned by deep water channels separating Pleistocene aggregate islands rather than by current islands. Substantial structure within PAIC clades indicates that additional drivers of diversification should be considered.  相似文献   

3.
Skinks of the genus Sphenomorphus are the most diverse clade of squamates in the Philippine Archipelago. Morphological examination of these species has defined six phenotypic groups that are commonly used in characterizations of taxonomic hypotheses. We used a molecular phylogeny based on four mitochondrial and two nuclear genes to assess the group's biogeographical history in the archipelago and examine the phylogenetic validity of the currently recognized Philippine species groups. We re‐examined traditional characters used to define species groups and used multivariate statistics to quantitatively evaluate group structure in morphometric space. Clustering analyses of phenotypic similarity indicate that some (but not all) members of previously defined species groups are phenotypically most similar to other members of the same group. However, when species group membership was mapped on our partitioned Bayesian phylogenetic hypothesis, only one species group corresponds to a clade; all other species group arrangements are strongly rejected by our phylogeny. Our results demonstrate that (1) previously recognized species group relationships were misled by phenotypic convergence; (2) Sphenomorphus is widely paraphyletic; and (3) multiple lineages have independently invaded the Philippines. Based on this new perspective on the phylogenetic relationships of Philippine Sphenomorphus, we revise the archipelago's diverse assemblage of species at the generic level, and resurrect and/or expand four previously recognized genera, and describe two new genera to accommodate the diversity of Philippine skinks of the Sphenomorphus group. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 1217–1243.  相似文献   

4.
Recent analyses of molecular markers have significantly revised the traditional taxonomy of Podarcis species (Squamata: Lacertidae), leading to critically reconsider the taxonomic value of several subspecies described only on morphological bases. In fact, lizards often exhibit high morphological plasticity both at the intra‐specific and the intra‐population level, especially on islands, where phenotypic divergences are mainly due to local adaptation, rather than to evolutionary differentiation. The Common wall lizard Podarcis muralis exhibits high morphological variability in biometry, pholidosis values and colour pattern. Molecular analyses have confirmed the key role played by the Italian Peninsula as a multi‐glacial refuge for P. muralis, pointing out the lack of congruence between mitochondrial lineages and the four peninsular subspecies currently recognized. Here, we analyse a portion of the protein‐encoding cytochrome b gene in the seven subspecies described for the Tuscan Archipelago (Italy), in order to test whether the mitochondrial haplotypes match the morphologically based taxonomy proposed for Common wall lizard. We also compare our haplotypes with all the others from the Italian Peninsula to investigate the presence of unique genetic lineages in insular populations. Our results do not agree completely with the subspecific division based on morphology. In particular, the phylogenetic analyses show that at least four subspecies are characterized by very similar haplotypes and fall into the same monophyletic clade, whereas the other three subspecies are closer to peninsular populations from central Italy. From these results, we conclude that at least some subspecies could be better regarded as simple eco‐phenotypes; in addition, we provide an explanation for the distinctiveness of exclusive lineages found in the archipelago, which constituted a refuge for this species during last glacial periods.  相似文献   

5.
As part of a larger comparative phylogeographical study of Philippine fruit bats, I used fragments of the mitochondrial genes cytochrome  b and ND2 to investigate phylogeography and diversification in Haplonycteris fischeri , a pteropodid bat endemic to the Philippines but widespread within the archipelago. Genetic diversity in H. fischeri was extremely high in these commonly studied genes, with 101 unique haplotypes in 123 sequenced individuals, although small, continuously isolated islands had less diversity than had large island complexes. Seven monophyletic groups and one paraphyletic group were restricted to individual islands, groups of islands, or parts of islands. Each Pleistocene island complex had a single resident monophyletic lineage; these five groups were separated by approximately 6–8% sequence divergence and apparently have been diverging for 4–6 Myr. Within island groups, monophyletic lineages on some individual islands suggest that current ocean channels have also been barriers to gene flow; in some cases, multiple allopatric clades were present on single islands. Basal divergence dates were estimated to be in the early Pliocene, and most diversification was apparently connected to the ongoing geological evolution of the Philippines. Geological history and current geography interact with ecology to cause substantial genetic differentiation within this primary forest-specialist species.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 329–349.  相似文献   

6.
Historical isolation during Pleistocene low sea level periods is thought to have contributed to divergence among marine basin populations across the Coral Triangle. In the Philippine archipelago, populations in the South China Sea, Sulu Sea–inland seas, and Philippine Sea‐Celebes Sea basins might have been partially isolated. Meanwhile, present‐day broadscale oceanographic circulation patterns suggest connectivity between these basins. To evaluate hypotheses regarding the influence of historical and contemporary factors on genetic structure, phylogeographic patterns based on mitochondrial control region sequences for a reef‐associated fish, Siganus fuscescens, were analysed. Three distinct lineages were recovered. One lineage was identified as the morphologically similar species Siganus canaliculatus, while two lineages are monophyletic with S. fuscescens. Clade divergence and demographic expansion in S. fuscescens occurred during the Pleistocene. A strong signal of latitudinal structure was detected (ΦCT = 0.188), driven by marked differences in clade distribution: one clade is widely distributed (clade A), while a second clade (clade B) has a restricted northern distribution. Regional structure of clade A is consistent with the basin isolation hypothesis (ΦCT = 0.040) and suggests isolation of the South China Sea (ΦCT = 0.091). Fine‐scale structure was observed in the South China Sea and south Philippine Sea, while Sulu Sea and inland seas were unstructured. Genetic structure across multiple spatial scales (archipelagic, regional, and fine‐scale within basins) suggests the influence of vicariant barriers and contemporary limits to gene flow in S. fuscescens that may be influenced by oceanographic circulation, geographical distance between available habitats, and latitudinal temperature differences.  相似文献   

7.
Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent.  相似文献   

8.
Establishment of conservation priorities for primates is a particular concern in the island archipelagos of Southeast Asia, where rates of habitat destruction are among the highest in the world. Conservation programs require knowledge of taxonomic diversity to ensure success. The Philippine tarsier is a flagship species that promotes environmental awareness and a thriving ecotourism economy in the Philippines. However, assessment of its conservation status has been impeded by taxonomic uncertainty, a paucity of field studies, and a lack of vouchered specimens and genetic samples available for study in biodiversity repositories. Consequently, conservation priorities are unclear. In this study we use mitochondrial and nuclear DNA to empirically infer geographic partitioning of genetic variation and to identify evolutionarily distinct lineages for conservation action. The distribution of Philippine tarsier genetic diversity is neither congruent with expectations based on biogeographical patterns documented in other Philippine vertebrates, nor does it agree with the most recent Philippine tarsier taxonomic arrangement. We identify three principal evolutionary lineages that do not correspond to the currently recognized subspecies, highlight the discovery of a novel cryptic and range-restricted subcenter of genetic variation in an unanticipated part of the archipelago, and identify additional geographically structured genetic variation that should be the focus of future studies and conservation action. Conservation of this flagship species necessitates establishment of protected areas and targeted conservation programs within the range of each genetically distinct variant of the Philippine tarsier.  相似文献   

9.
Aim The oriental magpie‐robin (Copsychus saularis) of South and Southeast Asia is a phenotypically variable species that appears to be closely related to two endemic species of the western Indian Ocean: the Madagascar magpie‐robin (Copsychus albospecularis) and the Seychelles magpie‐robin (Copsychus sechellarum). This unusual distribution led us to examine evolutionary relationships in magpie‐robins, and also the taxonomic significance of their plumage variation, via a molecular phylogenetic and population genetic analysis of C. saularis and C. albospecularis. Location Southern Asia from Nepal across Indochina to southern China, and the Indian Ocean from Madagascar to the Greater Sunda and Philippine islands. Methods We sequenced 1695 nucleotides of mitochondrial DNA comprising the complete second subunit of the nicotinamide adenine dinucleotide dehydrogenase (ND2) gene and 654 bases of the cytochrome c oxidase subunit I (COI) region in 51 individuals of eight C. saularis subspecies, 10 individuals of C. albospecularis (one subspecies) and single individuals of two other Copsychus species as outgroups. The data were analysed phylogenetically, with maximum likelihood, Bayesian, relaxed clock and parsimony methods, and geographically for patterns of genetic diversity. Results Phylogenetic analysis indicated that C. albospecularis lies within the nominal C. saularis, making C. saularis polyphyletic. Malagasy and non‐Philippine Asian populations form a monophyletic group that is sister to a clade of Philippine populations. Within non‐Philippine Asian populations, two groups are evident: black‐bellied birds in the eastern Greater Sunda islands and white‐bellied birds in the western Sundas and on mainland Asia. Main conclusions The phylogeny of magpie‐robins suggests a novel pattern of dispersal and differentiation in the Old World. Ancestral magpie‐robins appear to have spread widely among islands of the Indian Ocean in the Pliocene, probably aided by their affinity for coastal habitats. Populations subsequently became isolated in island groups, notably the Philippines, Madagascar and the Greater Sundas, leading to speciation in all three areas. Isolation in the Philippines may have been aided by competitive exclusion of C. saularis from Palawan by a congener, the white‐vented shama (Copsychus niger). In the Greater Sundas, white‐bellied populations appear to have invaded Borneo and Java recently, where they hybridize with resident black‐bellied birds.  相似文献   

10.
This study reports the isolation and characterization of eight microsatellite markers for the study of Philippine tarsiers (Tarsius syrichta), small primates endemic to this Southeast Asian archipelago. The markers were used to screen 14 Tarsius syrichta for allelic diversity. This suite of highly polymorphic microsatellites provides the first chance to genetically study parentage and dispersal patterns in Philippine tarsiers.  相似文献   

11.
The 22 genera and 64 species of rodents (Muridae: Murinae) distributed in the Philippine Islands provide a unique opportunity to study patterns and processes of diversification in island systems. Over 90% of these rodent species are endemic to the archipelago, but the relative importance of dispersal from the mainland, dispersal within the archipelago, and in situ differentiation as explanations of this diversity remains unclear, as no phylogenetic hypothesis for these species and relevant mainland forms is currently available. Here we report the results of phylogenetic analyses of the endemic Philippine murines and a wide sampling of murine diversity from outside the archipelago, based on the mitochondrial cytochrome b gene and the nuclear-encoded IRBP exon 1. Analysis of our combined gene data set consistently identified five clades comprising endemic Philippine genera, suggesting multiple invasions of the archipelago. Molecular dating analyses using parametric and semiparametric methods suggest that colonization occurred in at least two stages, one ca. 15 Mya, and another 8 to 12 million years later, consistent with the previous recognition of "Old" and "New" endemic rodent faunas. Ancestral area analysis suggests that the Old Endemics invaded landmasses that are now part of the island of Luzon, whereas the three New Endemic clades may have colonized through either Mindanao, Luzon, or both. Further, our results suggest that most of the diversification of Philippine murines took place within the archipelago. Despite heterogeneity between nuclear and mitochondrial genes in most model parameters, combined analysis of the two data sets using both parsimony and likelihood increased phylogenetic resolution; however, the effect of data combination on support for resolved nodes was method dependent. In contrast, our results suggest that combination of mitochondrial and nuclear data to estimate relatively ancient divergence times can severely compromise those estimates, even when specific methods that account for rate heterogeneity among genes are employed. [Biogeography; divergence date estimation; mitochondrial DNA; molecular systematics; Murinae; nuclear exon; Philippines; phylogeny.].  相似文献   

12.
13.
The endangered mountain zebra (Equus zebra) is endemic to the semi-arid inhospitable mountainous escarpments of southern Africa. The species is divided taxonomically into two geographically separated subspecies, each with differing recent population histories. In Namibia, Hartmann’s mountain zebra (E. z. hartmannae) is common and occurs in large free-ranging populations, whereas in South Africa, prolonged hunting and habitat destruction over the last 300 years has decimated populations of the Cape mountain zebra (E. z. zebra). In this study, we investigate the consequences of these divergent demographic histories for population genetic diversity and structure. We also examine the phylogeographic relationship between the two taxonomic groups. Genetic information was obtained at 15 microsatellite loci for 291 individuals from a total of 10 populations as well as 445 bp of the mitochondrial control region sequence data from 77 individuals. Both model-based and standard analytical approaches were used to examine the data. Both types of marker returned levels of diversity and structure that were consistent with population history. Low genetic variation within individual Cape mountain zebra populations, the characteristic indicator of population fragmentation and drift, was offset by moderate variation in the entire E. z. zebra sample. This implies that higher levels of diversity still exist within the Cape mountain zebra gene pool. A management strategy that entailed the mixing of aboriginal populations is therefore advocated in order to halt the further loss of Cape mountain zebra genetic diversity. Allele frequencies in Hartmann’s mountain zebra were relatively resilient to demographic fluctuations. Due to the high incidence of mitochondrial haplotype sharing between populations, the hypothesis that Cape and Hartmann’s mountain zebra mitochondrial lineages were reciprocally monophyletic was not supported. However, the presence of private alleles at nuclear loci rendered the two subspecies genetically distinct evolutionary significant units.  相似文献   

14.
We analysed genetic variation in mitochondrial DNA (mtDNA) control region in the Diceros bicornis minor and D. b. michaelianimals at the Western Plains Zoo, which form part of an international ex-situ breeding program. Six of the nine D. b. minor animals were wild-caught from Zimbabwe during the 1990s, and our study revealed five distinct mtDNA haplotypes, and a haplotype diversity of 0.86 in the colony. Phylogenetic relationships between mtDNA haplotypes analyzed using the neighbor joining method reveal that for the small sample available, D. b. minor and D. b. michaeli are reciprocally monophyletic and represent separate ancestral lineages. Nucleotide divergence between the black and and white rhinoceros(Ceratotherium simum) was 14.0%, and nucleotide divergencebetween the D. b. minor and the D. b. michaeli subspecies was 2.6%. This suggests a divergence time for the two blackrhinoceros subspecies of between 0.93 MY and 1.3 MY.  相似文献   

15.
The Philippine species of the genus Timonius present numerous taxonomic problems resulting from poorly defined species boundaries, misinterpretation of the origin of type specimens, and historical collections that often bear residual reproductive structures. Based on field observations and examination of herbarium materials, the following taxonomic amendments are proposed: conspecificity of T. philippinensis with T. finlaysonianus, and T. panayensis with T. valetonii, and transfer of T. quadrasii to Ridsdalea. This study also describes six new species from the archipelago: T. alejandroanus, T. dumagat, T. pseudoarboreus, T. ridsdalei, T. spes-vitarum and T. stevendarwinii. Finally, T. nitidus is excluded from the Philippine flora.  相似文献   

16.
Family level molecular phylogenetic analyses of cichlid fishes have generally suffered from a limited number of characters and/or poor taxonomic sampling across one or more major geographic assemblage, and therefore have not provided a robust test of early intrafamilial diversification. Herein we use both nuclear and mitochondrial nucleotide characters and direct optimization to reconstruct a phylogeny for cichlid fishes. Representatives of major cichlid lineages across all geographic assemblages are included, as well as nearly twice the number of characters as any prior family‐level study. In a strict consensus of 81 equally most‐parsimonious hypotheses, based on the simultaneous analysis of 2222 aligned nucleotide characters from two mitochondrial and two nuclear genes, four major subfamilial lineages are recovered with strong support. Etroplinae, endemic to Madagascar (Paretroplus) and southern Asia (Etroplus), is recovered as the sister taxon to the remainder of Cichlidae. Although the South Asian cichlids are monophyletic, the Malagasy plus South Asian lineages are not. The remaining Malagasy lineage, Ptychochrominae, is monophyletic and is recovered as the sister group to a clade comprising the African and Neotropical cichlids. The African (Pseudocrenilabrinae) and Neotropical (Cichlinae) lineages are each monophyletic in this reconstruction. The use of multiple molecular markers, from both mitochondrial and nuclear genes, results in a phylogeny that in general exhibits strong support, notably for early diversification events within Cichlidae. Results further indicate that Labroidei is not monophyletic, and that the sister group to Cichlidae may comprise a large and diverse assemblage of percomorph lineages. This hypothesis may at least partly explain why morphological studies that have attempted to place Cichlidae within Percomorpha, or that have tested cichlid monophyly using only “labroid” lineages, have met with only limited success. © The Willi Hennig Society 2004.  相似文献   

17.
Although Odonata are a key component of many freshwater ecosystems, their taxonomy and evolutionary history is still far from being well resolved. In the present study, we report the first molecular phylogeny for the Western Palaearctic Cordulegaster genus (Odonata: Anisoptera: Cordulegastridae). We sequenced fragments of both mitochondrial and nuclear genes [cytochrome c oxidase I (COI) and Internal Transcribed Spacer‐1 (ITS‐1)] from eight species and 13 subspecies, from western, southern and central Europe, Turkey, and Morocco. Our data support the existence of two major groups corresponding to the traditional boltonii‐ and bidentata‐groups. Both groups are monophyletic based on COI sequences and the distinctiveness of Cordulegaster princeps, Cordulegaster trinacriae, Cordulegaster picta and Cordulegaster heros relative to Cordulegaster boltonii, and Cordulegaster helladica and Cordulegaster insignis relative to Cordulegaster bidentata, is confirmed. All species are also monophyletic for ITS‐1, with the exception of Cordulegaster helladica buchholzi, which shares the haplotype with C. insignis. Although moderate levels of genetic diversity were found within C. boltonii, there was no clear separation among the four subspecies, with the exception of the populations of Cordulegaster boltonii algirica from North Africa. Similarly, no genetic differentiation was found between the two subspecies of C. bidentata, Cordulegaster bidentata bidentata and Cordulegaster bidenta sicilica. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111, 49–57.  相似文献   

18.
We studied the intraspecific evolutionary history of the South American Atlantic forest endemic Xiphorhynchusfuscus (Aves: Dendrocolaptidae) to address questions such as: Was the diversification of this bird's populations associated to areas of avian endemism? Which models of speciation (i.e., refuges, river as barriers or geotectonism) explain the diversification within X. fuscus? Does the genetic data support subspecies as independent evolutionary units (species)? We used mitochondrial (n=34) and nuclear (n=68) DNA sequences of X. fuscus to study temporal and spatial relationships within and between populations. We described four main monophyletic lineages that diverged during the Pleistocene. The subspecies taxonomy did not match all the evolutionary lineages; subspecies atlanticus was the only one that represented a monophyletic and isolated lineage. The distribution of these lineages coincided with some areas of endemism for passerines, suggesting that those areas could be regions of biotic differentiation. The ancestor of X. fuscus diverged approximately 3 million years ago from Amazonian taxa and the phylogeographic pattern suggested that X. fuscus radiated from northeastern Brazil. Neither the riverine nor the geotectonic vicariance models are supported as the primary cause for diversification of geographic lineages, but rainforest contractions and expansions (ecological vicariance) can explain most of the spatial divergence observed in this species. Finally, analyses of gene flow and divergence time estimates suggest that the endangered subspecies atlanticus (from northeastern Brazil) can be considered a full species under the general lineage species concept.  相似文献   

19.
We addressed the evolutionary relationships and biogeographical patterns of a model organism of low relative dispersal ability by electrophoretically assaying the products of 42 presumptive gene loci in Philippine and Bornean members of the Rana signata complex of SE Asian stream frogs. Utilizing three distantly related species of ranid frogs to deeply root trees consisting of five more closely‐related species and six in‐group species of the Rana signata complex, we conducted phylogenetic analyses that produced concordant topologies, regardless of the data coding strategy employed. All analyses support the hypothesis of monophyly for the Rana signata complex on the whole, but none provides support for the monophyly of its Philippine members. Our analyses of morphometric and allozyme data (along with biogeographical information) indicate that (1) most previously‐recognized Philippine and Bornean subspecies of the Rana signata complex should be recognized as full species in appreciation of their status as independent evolutionary lineages; (2) Rana picturata Boulenger (until very recently included in the synonymy of Rana signata signata) is deserving of specific rank; (3) the Mindoro Isl. (Philippine) population, previously confused with Rana signata similis of Luzon Isl. is a new species; (4) two major clades (((R. signata (R. grandocula + R. similis)) + (R. picturata (R. mangyanum + R. moellendorffi))) of Bornean + Philippine lineages are recognized, corresponding to two separate faunal exchanges between the Philippines and the edge of the Sunda Shelf; (5) invasions of the oceanic portions of the Philippine islands from the Sunda Shelf have occurred along both the eastern (Sulus–Mindanao–Samar–Leyte–Luzon) arc and the western (Palawan–Busuanga–Mindoro) island arcs; (6) northern reaches of Wallace’s Line (as modified by Huxley) include exceptions to an otherwise discrete faunal separation. These results suggest the need for revision of this biogeographical barrier, increased recognition of temporal patterns of island connectedness and geographical proximity, and/or a greater appreciation of dispersal abilities of ranid frogs. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 76 , 393–461.  相似文献   

20.
Inferring the evolutionary history of a group of species can be challenging given the many factors involved. In recent years, the increased availability of sequences of multiple genes per species has spurred the development of new methodologies to analyse multilocus data sets. Two approaches that analyse such data are concatenated supermatrix and coalescent-based species-tree analyses. In this study, we used both of these methods to infer the phylogenetic relationships of Iberian species of the genus Squalius from one mitochondrial and six nuclear genes. We found mitonuclear discordance in the phylogenetic relationships of the group. According to the mitochondrial gene analysis, all species were recovered as monophyletic except S. pyrenaicus; besides, in the concatenated supermatrix analysis of the nuclear markers, this species resolved as polyphyletic with three divergent evolutionary lineages. The coalescent-based nuclear species-tree analysis rendered a well-resolved phylogeny compared with the supermatrix analysis, which was unable to discern between S. carolitertii, S. castellanus and one of the evolutionary lineages of S. pyrenaicus. This result is likely due to the better integration of population uncertainty in the coalescent approach. Furthermore, Bayesian multilocus species delimitation analyses based on a BPP approach strongly supported the distinct nuclear lineages as different species. Nevertheless, the supermatrix analysis was able to obtain well-supported relationships in the divergent lineages with low numbers of individuals. Our study highlights the usefulness of different analytical methodologies to obtain a more complete picture of the evolutionary history of taxa, especially when discordant patterns among genes are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号