首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Grouping behavior of social ungulates may depend on both predator occurrence and perceived predation risk associated with habitat structure, reproductive state, and density of conspecifics. Over 3 years, we studied grouping behavior of guanaco (Lama guanicoe) families in Chilean Patagonia during the birthing season and determined their response to variation in predator occurrence and perceived predation risk (habitat structure, calf/adult rate, and density of conspecifics). We considered the effect of two predators, puma (Puma concolor) and culpeo fox (Lycalopex culpaeus). We measured two common (family group size and vigilance) and one novel (family group cohesion) behavioral responses of guanaco. Our results show that guanaco family groups adapted their grouping behavior to both predator occurrence and perceived predation risk. Larger family groups were found in open habitats and areas with high puma occurrence, while guanacos stayed in small family groups in areas with high shrub cover or low visibility. Group cohesion increased in areas with higher occurrence of pumas and culpeo foxes, and also increased in smaller family groups and in areas with low guanaco density. Vigilance (number of vigilant adults) was mainly related to group size and visibility, increasing in areas with low visibility, while residual vigilance (vigilance after removing the group‐size effect) did not vary with the explanatory variables examined. Our results suggest that a mix of predator occurrence and perceived predation risk influences guanaco grouping behavior and highlights the importance of evaluating different antipredator responses together and considering all predator species in studies aimed at understanding ungulate behavior.  相似文献   

2.
In this study, we examined the behavioural, temporal and spatial effects of simulated African wild dog (Lycaon pictus) presence on its two main prey species: kudu (Tragelaphus strepsiceros) and impala (Aepyceros melampus). We spread African wild dog faeces around waterholes and played African wild dog sounds at different intervals to mimic immediate and non‐immediate predation pressure. We looked at anti‐predator behaviour at both a herd and individual level and distinguished between high‐quality (detracts from all other activities), high‐cost vigilance and low‐quality (used to monitor the surrounding in spare time), low‐cost vigilance to determine costs involved. We found that simulated African wild dog presence had little effect on anti‐predator behaviour of their free‐ranging prey. Only when immediate predation risk was mimicked did kudu invest in (additional) high‐quality vigilance, whereas impala showed no response. Regardless of direct cues of African wild dog presence, behavioural adjustments to reduce predation risk were primarily based on environmental factors such as time of the day and broad‐scale habitat structure. Predators have been shown to utilize waterholes to hunt, and prey species are therefore likely to maximize anti‐predator behaviour in this high‐risk environment based on environmental variables affecting predation risk, the main predator within the system, and water requirements, leaving little flexibility to respond to (simulated) African wild dog presence.  相似文献   

3.
In natural environments, predation risk varies over time. The risk allocation hypothesis predicts that prey is expected to adjust key anti‐predator behaviours such as vigilance to temporal variation in risk. We tested the predictions of the risk allocation hypothesis in a natural environment where both a species‐rich natural predator community and human hunters are abundant and where the differences in seasonal and circadian activity between natural and anthropogenic predators provided a unique opportunity to quantify the contributions of different predator classes to anti‐predator behaviour. Whereas natural predators were expected to show similar levels of activity throughout the seasons, hunter activity was high during the daytime during a clearly defined hunting season. According to the risk allocation hypothesis, vigilance should then be higher during the hunting season and during daytime hours than during the non‐hunting season and night‐time hours. Roe deer (Capreolus capreolus) on the edge of Bia?owie?a Primeval Forest in Eastern Poland displayed vigilance behaviour consistent with these predictions. The behavioural response of roe deer to temporarily varying predation risks emphasises the behavioural plasticity of this species and suggests that future studies of anti‐predator behaviour need to incorporate circadian variation in predation pressure as well as risk gradients of both natural and anthropogenic predators.  相似文献   

4.
Social prey species respond to predation risk by modifying habitat selection and grouping behaviour. These responses may depend on both actual predation risk (predator probability of occurrence) and/or on perceived predation risk associated with habitat structure. Other factors like food availability and co-occurrence with other species may also affect habitat selection and group formation. We analyse habitat selection and grouping behaviour (group size and cohesion) of lesser rhea (Rhea pennata subsp. pennata), a ratite endemic of South America inhabiting steppe shrublands and grasslands, in relation to actual (puma probability of occurrence) and perceived (habitat structure: openness, visibility) predation risk, co-occurrence with other herbivore species and forage availability in the Chilean Patagonia. We used data from 9 sampling seasons in 5 years. Results show that habitat selection, group size and cohesion in lesser rhea were mainly driven by variables associated with perceived predation risk and by co-occurrence with other herbivores both during breeding and non–breeding season. As expected, lesser rhea preferred open habitats (vegas and grasslands) that allow a behaviour of ‘watch and run’ to avoid predation and formed larger groups in them. Moreover, lesser rhea positively selected year-round habitats where livestock occur, forming large groups during non–breeding season there. Group size and co-occurrence with other herbivores significantly decreased group cohesion, suggesting a reduction of perceived predation risk. Therefore, lesser rhea seems to take advantage of forming mixed interspecific groups to reduce predation risk. These results suggest that lesser rhea habitat selection and grouping behaviour are preferentially driven by factors related to perceived predation risk than by actual predator occurrence or food availability.  相似文献   

5.
Visual obstructions can cause an increase in antipredator vigilance in prey animals by making predator detection more difficult. However, visual obstructions can also skew the perception of group size and inter‐individual distances and impair the detection of alarm signals by conspecifics. These changes within the group alone can cause an increase in vigilance. To disentangle the contribution of these various factors to changes in vigilance, I documented vigilance in a gregarious species, the semipalmated sandpiper Calidris pusilla, foraging in a habitat where a naturally‐occurring visual barrier partially prevented predator detection without altering the transfer of information about predation risk within the group. I used a matched sampling design to collect vigilance data for birds using adjacent areas with and without the visual barrier. In the visually‐obstructed area, sandpipers maintained a higher level of vigilance, occurred farther away from cover and in smaller flocks, and preferentially scanned the area of danger with one eye in particular. All these changes suggest that visual obstruction increased perceived predation risk. I conclude that it is the inability to get a good view of any approaching predator, rather than changes in intra‐group communication that caused the increase in vigilance in the visually‐obstructed area.  相似文献   

6.
Determination of fitness differentials between individuals adopting different migratory and dispersal strategies is basic to understand the evolution of migration. In the Eurasian siskin Carduelis spinus, both resident and transient birds forage within the same wintering area, providing the rare opportunity to compare their foraging behaviour in the same area and habitat. The aim of this study was to test the predictions associated to the different hypothesized costs of transience by studying the vigilance and foraging behaviour of wild wintering siskins foraging at three bird tables with different predation risk and interference competition levels. Transient siskins showed longer scan durations than residents, either because of site unfamiliarity or subordination (i.e. prior‐occupancy effect). However, residents and transients did not differ in aggression rates, contrary to the dear‐enemy effect. Transient siskins did not show a higher allocation of time to vigilance, contrary to the hypothesis of compensation vigilance to reduce predation risk by dispersing animals. Moreover, transients increased pecking rate with increasing predation risk, showed lower scan rates, longer foraging bouts and, in males, presented marginally higher proportions far from cover. Altogether these results strongly support the hypothesis that transients incur a predation cost due to a less efficient vigilance and foraging system.  相似文献   

7.
Vigilance is amongst the most universal of anti‐predator strategies and commonly declines with increasing group size. We experimentally manipulated predation risk in a system with a known relationship between group size and vigilance levels to explore whether this relationship changes in response to elevated predation risk. We investigated the vigilance levels of Egyptian geese Alopochen aegyptiaca at eight golf courses in the western Cape, South Africa, to assess the perception of and reaction to predation risk. We manipulated predation risk by introducing trained Harris's hawks Parabuteo unicintus where avian predation was otherwise low or absent. The study confirmed the typical reduction in vigilance with group size on control sites, where the risk of predation is low. However, at experimental sites with elevated predation risk, a positive relationship between vigilance and group size was observed. We hypothesize that the mechanism for this relationship might be linked to social information transfer via copying behaviour and manipulation to induce vigilance. Thus, larger groups will have a higher probability of containing individuals with experience of elevated predation risk and their increased vigilance behaviour is copied by naïve individuals. This prediction is based on the intended outcome of introducing avian predation to make the geese feel less safe and to eventually leave the site as a management tool for controlling nuisance geese.  相似文献   

8.
Foraging birds can manage time spent vigilant for predators by forming groups of various sizes. However, group size alone will not always reliably determine the optimal level of vigilance. For example, variation in predation risk or food quality between patches may also be influential. In a field setting, we assessed how simultaneous variation in predation risk and intake rate affects the relationship between vigilance and group size in foraging Ruddy Turnstones Arenaria interpres. We compared vigilance, measured as the number of ‘head‐ups’ per unit time, in habitat types that differed greatly in prey energy content and proximity to cover from which predators could launch surprise attacks. Habitats closer to predator cover provided foragers with much higher potential net energy intake rates than habitats further from cover. Foragers formed larger and denser flocks on habitats closer to cover. Individual vigilance of foragers in all habitats declined with increasing flock size and increased with flock density. However, vigilance by foragers on habitats closer to cover was always higher for a given flock size than vigilance by foragers on habitats further from cover, and habitat remained an important predictor of vigilance in models including a range of potential confounding variables. Our results suggest that foraging Ruddy Turnstones can simultaneously assess information on group size and the general likelihood of predator attack when determining their vigilance contribution.  相似文献   

9.
Predation risk influences foraging decisions and time allocation of prey species, and may result in habitat shifts from potentially dangerous to safer areas. We examined a wild population of western grey kangaroos (Macropus fuliginosus) to test the efficacy of predator faecal odour in influencing time allocated to different behaviours and inducing changes in habitat use. Kangaroos were exposed to fresh faeces of a historical predator, the dingo (Canis lupus dingo), a recently introduced predator, the red fox (Vulpes vulpes), a herbivore (horse, Equus caballus) and an unscented control simultaneously. Kangaroos did not increase vigilance in predator‐scented areas. However, they investigated odour sources by approaching and sniffing; more time was spent investigating fox odour than control odours. Kangaroos then exhibited a clear anti‐predator response to predator odours, modifying their space use by rapidly escaping, then avoiding fox and dingo odour sources. Our results demonstrate that wild western grey kangaroos show behavioural responses to predator faeces, investigating then avoiding these olfactory cues of potential predation risk, rather than increasing general vigilance. This study contributes to our understanding of the impact of introduced mammalian predators on marsupial prey and demonstrates that a native Australian marsupial can recognize and respond to the odour of potential predators, including one that has been recently introduced.  相似文献   

10.
Cover can be either a source of protection or a source of danger for foragers. Distance to cover creates a gradient in predation risk that allows examining adjustments in anti‐predator behaviour such as group size and vigilance. As distance to obstructive cover increases, both group size and vigilance are expected to decrease given that individuals have more time to react to a more distant source of danger. I provide an empirical test of these predictions in staging semipalmated sandpipers (Calidris pusilla) in a system controlling for many confounding factors that have marred earlier research. Controlling for food density, forager density and phenotypic attributes often correlated with distance to cover, I found that as distance to obstructive cover increased, sandpipers foraged in sparser groups, were less flighty and to some extent less vigilant. Such controlled studies are needed to re‐assess the relationship between distance to cover and anti‐predator behaviour.  相似文献   

11.
In reintroduction projects, ethology studies play a significant role in evaluating the behaviour of the individuals in habitats where they are reintroduced. We studied foraging and vigilance time allocation of a guanaco (Lama guanicoe) population reintroduced in Quebrada del Condorito National Park (QCNP), in the central mountains of Córdoba, Argentina. On average, individuals showed a higher proportion of time invested in vigilance and a lower proportion of time invested in foraging than a previously studied guanaco population belonging to the same ecological region as the source population, suggesting that at the time of this study, the reintroduced population was not fully adapted to the new habitat or suffered from an increased predation pressure. On the other hand, as expected for the species, throughout the study period, males allocated more time to vigilance than females, both sexes increasing vigilance during the reproductive period, and females increasing foraging time allocation during the post-reproductive period. Taking into account that further reinforcement to the existing population is planned, the present results may contribute to the elaboration of management strategies aimed at the successful establishment of guanaco in QCNP.  相似文献   

12.
Vigilance is an important anti-predator behaviour that can be an indicator of the predation risk faced by potential prey animals. Here, we assess the collective vigilance, or the vigilance level of an entire group, of corvids (Family: Corvidae) at experimentally placed carcasses in a desert environment in Australia. Specifically, we explore the relationship between collective vigilance levels and the habitat in which the carcass was placed, the time since a potential predator (dingo Canis dingo, wedge-tailed eagle Aquila audax or red fox Vulpes vulpes) was present at a carcass, and the group size of corvids around the carcass. We found that corvids are more vigilant in open habitat, but that group size and the recent presence of a potential predator does not affect the collective vigilance behaviour of corvids. The results demonstrate the important link between habitat and vigilance, and that animals may adopt anti-predator behaviours irrespective of the size of the group in which they occur or the recent presence of a potential predator.  相似文献   

13.
Many previous studies have found that as group size increases, individual vigilance levels decrease and forage intake increases (group‐size effect), but few such studies have considered the impact of within‐group interactions and other confounding factors on the direction of group‐size effects. A free‐ranging population of feral goats (Capra hircus), with little predation threat, was studied on the Isle of Rum (northwest Scotland), from Jun. to Nov. 2000, to investigate the effects of group size on individual vigilance levels and foraging efficiency after taking into account the effect of confounding factors (e.g. sex, season, time of day, habitat, predation risk) and within‐group interactions (via changes in movement rates while feeding). Our results show that, while group size exerted a negative influence on individual vigilance levels and a positive effect on movement rate, foraging efficiency never increased with group size and even decreased at certain times of day. There was no sex difference in individual vigilance in feral goats, but foraging efficiency was higher in females than in males. Goats were more vigilant in fall than in summer. The results imply that the benefits for foraging obtained from the reduced vigilance level in larger groups may be constrained or offset by increased interaction (or competition) within larger groups even in a population that faces negligible predation risk.  相似文献   

14.
Human presence in natural environments is often a source of stress that is perceived by large ungulates as an increased risk of predation. Alternatively, disturbance induced by hikers creates a relatively predator‐free space that may serve as a refuge. We measured the behavioral responses of female caribou to disturbance associated with the presence of hikers during summer in the Gaspésie National Park. We used those data to determine whether caribou responded negatively to human activity (i.e., the predation risk hypothesis) or whether human activity resulted in a decrease in the magnitude of perceived risk (i.e., the refuge hypothesis). Female caribou with a calf spent nearly half of their time feeding, regardless of the presence of a trail or the number of hikers. They also decreased their vigilance near trails when the number of hikers increased. Conversely, lone females fed less frequently and almost doubled the time invested in vigilance under the same circumstances. However, both groups of females moved away from trails during the day, especially in the presence of hikers. We demonstrated that risk avoidance was specific to the maternal state of the individual. Lactating females accommodated the presence of hikers to increase time spent foraging and nutritional intake, providing support for the refuge hypothesis. Alternatively, lone females with lower energetic requirements and no maternal investment in a vulnerable calf appeared less tolerant to risk, consistent with the predation risk hypothesis. Synthesis and applications: Hikers influenced the vigilance–feeding trade‐off in caribou, underlining the importance of appropriate management of linear structures and human activities, especially across the critical habitat of endangered species. Even if some individuals seemed to benefit from human presence, this behavioral adaptation was not sufficient to reduce annual calf mortality associated with predation.  相似文献   

15.

Background

Group dynamics of gregarious ungulates in the grasslands of the African savanna have been well studied, but the trade-offs that affect grouping of these ungulates in woodland habitats or dense vegetation are less well understood. We examined the landscape-level distribution of groups of blue wildebeest, Connochaetes taurinus, and Burchell''s zebra, Equus burchelli, in a predominantly woodland area (Karongwe Game Reserve, South Africa; KGR) to test the hypothesis that group dynamics are a function of minimizing predation risk from their primary predator, lion, Panthera leo.

Methodology/Principal Findings

Using generalized linear models, we examined the relative importance of habitat type (differing in vegetation density), probability of encountering lion (based on utilization distribution of all individual lions in the reserve), and season in predicting group size and composition. We found that only in open scrub habitat, group size for both ungulate species increased with the probability of encountering lion. Group composition differed between the two species and was driven by habitat selection as well as predation risk. For both species, composition of groups was, however, dominated by males in open scrub habitats, irrespective of the probability of encountering lion.

Conclusions/Significance

Distribution patterns of wildebeest and zebra groups at the landscape level directly support the theoretical and empirical evidence from a range of taxa predicting that grouping is favored in open habitats and when predation risk is high. Group composition reflected species-specific social, physiological and foraging constraints, as well as the importance of predation risk. Avoidance of high resource open scrub habitat by females can lead to loss of foraging opportunities, which can be particularly costly in areas such as KGR, where this resource is limited. Thus, landscape-level grouping dynamics are species specific and particular to the composition of the group, arising from a tradeoff between maximizing resource selection and minimizing predation risk.  相似文献   

16.
1. Vigilance increases fitness by improving predator detection but at the expense of increasing starvation risk. We related variation in vigilance among 122 radio-tagged overwintering grey partridges Perdix perdix (L.) across 20 independent farmland sites in England to predation risk (sparrowhawk Accipiter nisus L., kill rate), use of alternative antipredation behaviours (grouping and use of cover) and survival. 2. Vigilance was significantly higher when individuals fed in smaller groups and in taller vegetation. In the covey period (in early winter when partridges are in flocks), vigilance and use of taller vegetation was significantly higher at sites with higher sparrowhawk predation risk, but tall vegetation was used less by larger groups. Individuals were constrained in reducing individual vigilance by group size and habitat choice because maximum group size was determined by overall density in the area during the covey period and by the formation of pairs at the end of the winter (pair period), when there was also a significant twofold increase in the use of tall cover. 3. Over the whole winter individual survival was higher in larger groups and was lower in the pair period. However, when controlling for group size, mean survival decreased as vigilance increased in the covey period. This result, along with vigilance being higher at sites with increasing with raptor risk, suggests individual vigilance increases arose to reduce short-term predation risk from raptors but led to long-term fitness decreases probably because high individual vigilance increased starvation risk or indicated longer exposure to predation. The effect of raptors on survival was less when there were large groups in open habitats, where individual partridges can probably both detect predators and feed efficiently. 4. Our study suggests that increasing partridge density and modifying habitat to remove the need for high individual vigilance may decrease partridge mortality. It demonstrates the general principle that antipredation behaviours may reduce fitness long-term via their effects on the starvation-predation risk trade-off, even though they decrease predation risk short-term, and that it may be ecological constraints, such as poor habitat (that lead to an antipredation behaviour compromising foraging), that cause mortality, rather than the proximate effect of an antipredation behaviour such as vigilance.  相似文献   

17.
The concept of sociality has been associated with the effectiveness of antipredator mechanisms, like cooperative vigilance and the dilution effect. Lama guanicoe (guanaco) is a social native herbivore in South America and a social species. The objectives of this study were to evaluate the antipredator responses of different-sized groups of guanacos in areas with varying predation risks and to determine antipredator mechanisms in guanacos. For this, we measured different antipredator responses to a potential predator (human subjects). Detection of predator and flight distances from predator both increased with a greater number of guanacos per group and with greater distances among guanacos within the social group. Both buffer distance and flight time decreased with a greater number of guanacos per group, but increased with greater distances among guanacos inside the social group. Solitary adult males moved shorter distance and mixed groups moved greater distances. Flight distances were greater in areas with tall and dense vegetation than in areas with low vegetation. Buffer distance and flight time were shorter in undulating land than on flat lands, and groups were usually observed on hill slopes. Our results suggest that the benefit of social grouping in guanacos is the increased probability of avoiding predator with cooperative vigilance and not with the dilution effect. This means that a predator could be detected earlier when approaching a guanaco group than when approaching a solitary individuals and could thus be avoided.  相似文献   

18.
Abstract Improved predator detection is often stated to be one of the principal benefits of social foraging. However, actual field evidence supporting this assumption is scarce. This may be the result of the fact that most observations are conducted on social animals acting in the absence of an acute predation threat, yet the benefits of grouping come to the fore in that brief moment when an individual's life is at risk. As predation attempts are typically rare in nature, experimental manipulations are necessary to further explore the costs and benefits of social foraging. This study utilizes simple predator simulations (by humans) to experimentally test the predator‐detecting abilities and escape strategies of groups of free‐living emus Dromaius novaehollandiae. Emus in larger groups spent less time in vigilance and more time foraging. Nonetheless, the combined vigilance of group members ensured that emus detected the ‘simulated predator’ sooner as group size increased. After detecting the ‘predator’, larger groups waited longer until opting to flee, and then spent less time and energy doing so. Thus, the results of this study provide experimental evidence that emus benefit from grouping in terms of both the ‘many‐eyes effect’ and the ‘dilution effect’.  相似文献   

19.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

20.
The group size effect states that animals living in groups gain anti‐predator benefits through reducing vigilance levels as group size increases. A basic assumption of group size effect is that all individuals are equally important for a focal individual, who may adjust its vigilance levels according to social information acquired from them. However, some studies have indicated that neighbors pose greater influences on an individual's vigilance decisions than other group members, especially in large aggregations. Vigilance has also been found to be directed to both predators (anti‐predation vigilance) and conspecifics (social vigilance). Central individuals might rely more on social vigilance than peripheral individuals. To test these hypotheses, we examined the effects of flock size, number of neighbors and position within a flock on vigilance and competition of greater white‐fronted goose Anser albifrons that form large foraging flocks in winter, controlling the effects of other variables (group identity, winter period and site). We found that individual vigilance levels were significantly affected by number of neighbors and position within a flock, whereas flock size showed no effect. Individuals devoted a large component of vigilance to nearby flock mates. Central individuals directed a relatively larger proportion of vigilance to monitor neighbors than peripheral ones, indicating that central individuals more relied on social information acquired from neighbors, possibly caused by the more blocked visual field of central individuals. Moreover, some social vigilance may function as conducting or preventing agonistic interactions since competition intensity was positively correlated with number of neighbors. Our study therefore demonstrate that the number of neighbors is more important than group size in determining individual vigilance in large animal groups. Further studies are still needed to unravel which neighbors pose greater influence on individual vigilance, and the factors that influence individuals to acquire information from their neighbors to adjust vigilance behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号