首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   

3.
Many clonal organisms experience occasional events of sexual recombination, with profound consequences for their population dynamics and evolutionary trajectories. With the recent development of polymorphic genetic markers and new statistical methods, we now have an unprecedented ability to detect recombination in organisms that are thought to reproduce strictly, or essentially asexually. However, it is not always obvious which methodology to apply. Consequently, biologists might decide how to analyse their data without clear guidelines. Here, we discuss the available methods, focusing on those best suited when working with limited genetic information, such as a few genetic markers or DNA sequences. We conclude by commenting on the prospects offered by some recent conceptual advances and the access to high throughput technologies in an increasing number of model organisms.  相似文献   

4.
Knowledge of how individuals are related is important in many areas of research, and numerous methods for inferring pairwise relatedness from genetic data have been developed. However, the majority of these methods were not developed for situations where data are limited. Specifically, most methods rely on the availability of population allele frequencies, the relative genomic position of variants and accurate genotype data. But in studies of non‐model organisms or ancient samples, such data are not always available. Motivated by this, we present a new method for pairwise relatedness inference, which requires neither allele frequency information nor information on genomic position. Furthermore, it can be applied not only to accurate genotype data but also to low‐depth sequencing data from which genotypes cannot be accurately called. We evaluate it using data from a range of human populations and show that it can be used to infer close familial relationships with a similar accuracy as a widely used method that relies on population allele frequencies. Additionally, we show that our method is robust to SNP ascertainment and applicable to low‐depth sequencing data generated using different strategies, including resequencing and RADseq, which is important for application to a diverse range of populations and species.  相似文献   

5.
Advancing technologies have facilitated the ever‐widening application of genetic markers such as microsatellites into new systems and research questions in biology. In light of the data and experience accumulated from several years of using microsatellites, we present here a literature review that synthesizes the limitations of microsatellites in population genetic studies. With a focus on population structure, we review the widely used fixation (FST) statistics and Bayesian clustering algorithms and find that the former can be confusing and problematic for microsatellites and that the latter may be confounded by complex population models and lack power in certain cases. Clustering, multivariate analyses, and diversity‐based statistics are increasingly being applied to infer population structure, but in some instances these methods lack formalization with microsatellites. Migration‐specific methods perform well only under narrow constraints. We also examine the use of microsatellites for inferring effective population size, changes in population size, and deeper demographic history, and find that these methods are untested and/or highly context‐dependent. Overall, each method possesses important weaknesses for use with microsatellites, and there are significant constraints on inferences commonly made using microsatellite markers in the areas of population structure, admixture, and effective population size. To ameliorate and better understand these constraints, researchers are encouraged to analyze simulated datasets both prior to and following data collection and analysis, the latter of which is formalized within the approximate Bayesian computation framework. We also examine trends in the literature and show that microsatellites continue to be widely used, especially in non‐human subject areas. This review assists with study design and molecular marker selection, facilitates sound interpretation of microsatellite data while fostering respect for their practical limitations, and identifies lessons that could be applied toward emerging markers and high‐throughput technologies in population genetics.  相似文献   

6.
Growing evidence shows that epigenetic mechanisms contribute to complex traits, with implications across many fields of biology. In plant ecology, recent studies have attempted to merge ecological experiments with epigenetic analyses to elucidate the contribution of epigenetics to plant phenotypes, stress responses, adaptation to habitat, and range distributions. While there has been some progress in revealing the role of epigenetics in ecological processes, studies with non‐model species have so far been limited to describing broad patterns based on anonymous markers of DNA methylation. In contrast, studies with model species have benefited from powerful genomic resources, which contribute to a more mechanistic understanding but have limited ecological realism. Understanding the significance of epigenetics for plant ecology requires increased transfer of knowledge and methods from model species research to genomes of evolutionarily divergent species, and examination of responses to complex natural environments at a more mechanistic level. This requires transforming genomics tools specifically for studying non‐model species, which is challenging given the large and often polyploid genomes of plants. Collaboration among molecular geneticists, ecologists and bioinformaticians promises to enhance our understanding of the mutual links between genome function and ecological processes.  相似文献   

7.
Microsatellites (or SSRs: simple sequence repeats) are among the most frequently used DNA markers in many areas of research. The use of microsatellite markers is limited by the difficulties involved in their de novo isolation from species for which no genomic resources are available. We describe here a high-throughput method for isolating microsatellite markers based on coupling multiplex microsatellite enrichment and next-generation sequencing on 454 GS-FLX Titanium platforms. The procedure was calibrated on a model species (Apis mellifera) and validated on 13 other species from various taxonomic groups (animals, plants and fungi), including taxa for which severe difficulties were previously encountered using traditional methods. We obtained from 11,497 to 34,483 sequences depending on the species and the number of detected microsatellite loci ranged from 199 to 5791. We thus demonstrated that this procedure can be readily and successfully applied to a large variety of taxonomic groups, at much lower cost than would have been possible with traditional protocols. This method is expected to speed up the acquisition of high-quality genetic markers for nonmodel organisms.  相似文献   

8.
9.
The budding yeast, Saccharomyces cerevisiae, is an excellent model system for the study of DNA polymerases and their roles in DNA replication, repair, and recombination. Presently ten DNA polymerases have been purified and characterized from S. cerevisiae. Rapid advances in genome sequencing projects for yeast and other organisms have greatly facilitated and accelerated the identification of yeast enzymes and their homologues in other eukaryotic species. This article reviews current available research on yeast DNA polymerases and their functional roles in DNA metabolism. Relevant information about eukaryotic homologues of these enzymes will also be discussed.  相似文献   

10.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.  相似文献   

11.
12.
Comparison of genomic DNA sequences: solved and unsolved problems   总被引:5,自引:0,他引:5  
MOTIVATION: The DNA sequences of entire genomes are being determined at a rapid rate. Whereas initial genome sequencing efforts were for organisms chosen to be widely spaced in the tree of life, there is a growing emphasis on projects to sequence a species that is sufficiently similar to an already-sequenced species to allow direct comparison of those two DNA sequences. This and other changes in genome sequencing strategies have created a strong need for new methods to compare genomic sequences. RESULTS: We sketch the current state of software for comparing genomic DNA sequences and outline research directions that we believe are likely to result in important advances in practice.  相似文献   

13.
Changes in technology are fundamentally reframing our concept of what constitutes a model organism. Nevertheless, research advances in the more traditional model organisms have enabled fresh and exciting opportunities for young scientists to establish new careers and offer the hope of comprehensive understanding of fundamental processes in life. New advances in translational research can be expected to heighten the importance of basic research in model organisms and expand opportunities. However, researchers must take special care and implement new resources to enable the newest members of the community to engage fully with the remarkable legacy of information in these fields.  相似文献   

14.
Recent advances in high‐thoughput DNA sequencing have made genome‐scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large‐scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot‐strap’ approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired.  相似文献   

15.
16.
17.
《Genomics》2021,113(3):1098-1113
Epigenetic inheritance occurs due to different mechanisms such as chromatin and histone modifications, DNA methylation and processes mediated by non-coding RNAs. It leads to changes in gene expressions and the emergence of new traits in different organisms in many diseases such as cancer. Recent advances in experimental methods led to the identification of epigenetic target sites in various organisms. Computational approaches have enabled us to analyze mass data produced by these methods. Next-generation sequencing (NGS) methods have been broadly used to identify these target sites and their patterns. By using these patterns, the emergence of diseases could be prognosticated. In this study, target site prediction tools for two major epigenetic mechanisms comprising histone modification and DNA methylation are reviewed. Publicly accessible databases are reviewed as well. Some suggestions regarding the state-of-the-art methods and databases have been made, including examining patterns of epigenetic changes that are important in epigenotypes detection.  相似文献   

18.
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality – analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding‐site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade‐offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality‐induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding‐site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long‐distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non‐breeding locations.  相似文献   

19.
20.
Background As in other model organisms, genetic background in the non‐human primates Macaca mulatta and Macaca fascicularis is an experimental variable that affects the response of other study variables. Genetic background in model organisms is manipulated by breeding schemes but is generally pre‐determined by the source population used to found captive stocks. In M. fascicularis three such sources have been distinguished, however, these are not routinely taken into consideration when designing research. Methods We exemplify a mitochondrial DNA (mtDNA)‐based strategy to trace the maternal geographic origins of M. fascicularis animals of unspecified origins. Results Macaca fascicularis of unspecified origins kept at primate research centers carry mtDNA haplotypes representing all three major genetic subdivisions. Conclusions We suggest that the genetic background of study animals could be better specified in the future using an mtDNA‐based approach, which would enable informed selection of study animals and help reduce variation within and among studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号