首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active organelles of cyanobacterial origin that have been acquired independently of classic primary plastids. Because their acquisition did take place relatively recently, they are expected to provide new insight into the ancient cyanobacterial primary endosymbiosis. During the process of Paulinella endosymbiont-to-organelle transformation, more than 30 genes have been transferred from the organelle to the host nuclear genome via endosymbiotic gene transfer (EGT). The article discusses step-by-step protein import of EGT-derived proteins into Paulinella photosynthetic organelles with the emphasis on the nature of their targeting signals and the final passage of proteins through the inner organelle membrane. The latter most probably involves a simplified Tic translocon composed of Tic21- and Tic32-like proteins as well as a Hsp70-based motor responsible for pulling of imported proteins into the organelle matrix. Our results indicate that although protein translocation across the inner membrane of Paulinella photosynthetic organelles seems to resemble the one in classic primary plastids, the transport through the outer membrane does not. The differences could result from distinct integration pathways of Paulinella photosynthetic organelles and primary plastids with their respective host cells.  相似文献   

2.
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because Gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of Gram-negative bacteria that mediate biogenesis of β-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.  相似文献   

3.
The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of gram-negative bacteria that mediate biogenesis of beta-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import.  相似文献   

4.
Some nuclear‐encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi‐protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear‐encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into fully integrated organelles. From this perspective it is more parsimonious to presume the early evolution of post‐translational protein import via simpler, ancestral forms of modern Toc and Tic plastid translocons, with EM trafficking arising later to accommodate glycosylation and/or protein targeting to multiple cellular locations. This hypothesis is supported by both empirical and comparative data, and is consistent with the relative paucity of EM‐based transport to modern primary plastids.  相似文献   

5.
The cyanobacterial endosymbionts of Paulinella chromatophora can shed new light on the process of plastid acquisition. Their genome is devoid of many essential genes, suggesting gene transfer to the host nucleus and protein import back into the endosymbionts/plastids. Strong evidence for such gene transfer is provided by the psaE gene, which encodes a PSI component that was efficiently transferred to the Paulinella nucleus. It remains unclear, however, how this protein is imported into the endosymbionts/plastids. We reanalyzed the sequence of Paulinella psaE and identified four potential non‐AUG translation initiation codons upstream of the previously proposed start codon. Interestingly, the longest polypeptide, starting from the first UUG, contains a clearly identifiable signal peptide with very high (90%) predictability. We also found several downstream hairpin structures that could enhance translation initiation from the alternative codon. These results strongly suggest that the PsaE protein is targeted to the outer membrane of Paulinella endosymbionts/plastids via the endomembrane system. On the basis of presence of respective bacterial homologs in the Paulinella endosymbiont/plastid genome, we discuss further trafficking of PsaE through the peptidoglycan wall and the inner envelope membrane. It is possible that other nuclear‐encoded proteins of P. chromatophora also carry signal peptides, but, alternatively, some may be equipped with transit peptides. If this is true, Paulinella endosymbionts/plastids would possess two distinct targeting systems, one cotranslational and the second posttranslational, as has been found in higher plant plastids. Considering the endomembrane system‐mediated import pathway, we also discuss homology of the membranes surrounding Paulinella endosymbionts/plastids.  相似文献   

6.
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont’s genome, and have identified more than 30 genes that have been transferred to the host cell’s nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont’s envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids.  相似文献   

7.
A single general import pathway in vascular plants mediates the transport of precursor proteins across the two membranes of the chloroplast envelope, and at least four pathways are responsible for thylakoid protein targeting. While the transport systems in the thylakoid are related to bacterial secretion systems, the envelope machinery is thought to have arisen with the endosymbiotic event and to be derived, at least in part, from proteins present in the original endosymbiont. Recently the moss Physcomitrella patens has gained worldwide attention for its ability to undergo homologous recombination in the nuclear genome at rates unseen in any other land plants. Because of this, we were interested to know whether it would be a useful model system for studying chloroplast protein transport. We searched the large database of P. patens expressed sequence tags for chloroplast transport components and found many putative homologues. We obtained full-length sequences for homologues of three Toc components from moss. To our knowledge, this is the first sequence information for these proteins from non-vascular plants. In addition to identifying components of the transport machinery from moss, we isolated plastids and tested their activity in protein import assays. Our data indicate that moss and pea (Pisum sativum) plastid transport systems are functionally similar. These findings identify P. patens as a potentially useful tool for combining genetic and biochemical approaches for the study of chloroplast protein targeting. Abbreviations: EST, expressed sequence tag; LHCP, light-harvesting chlorophyll-binding protein; NIBB, National Institute for Basic Biology; OE17, 17 kDa subunit of the oxygen-evolving complex; PC, plastocyanin; PEP, Physcomitrella EST Programme; SPP, stromal processing peptidase; SRP, signal recognition particle; Tat, twin-arginine translocation; Tic, translocon at the inner membrane of the chloroplast envelope; Toc, translocon at the outer membrane of the chloroplast envelope; TPP, thylakoid processing peptidase; TPR, tetratricopeptide repeatSupplementary material to this paper is available in electronic form at .This revised version was opublished online in July 2005 with corrected page numbers.  相似文献   

8.
What factors drove the transformation of the cyanobacterial progenitor of plastids (e.g. chloroplasts) from endosymbiont to bona fide organelle? This question lies at the heart of organelle genesis because, whereas intracellular endosymbionts are widespread in both unicellular and multicellular eukaryotes (e.g. rhizobial bacteria, Chlorella cells in ciliates, Buchnera in aphids), only two canonical eukaryotic organelles of endosymbiotic origin are recognized, the plastids of algae and plants and the mitochondrion. Emerging data on (1) the discovery of non‐canonical plastid protein targeting, (2) the recent origin of a cyanobacterial‐derived organelle in the filose amoeba Paulinella chromatophora, and (3) the extraordinarily reduced genomes of psyllid bacterial endosymbionts begin to blur the distinction between endosymbiont and organelle. Here we discuss the use of these terms in light of new data in order to highlight the unique aspects of plastids and mitochondria and underscore their central role in eukaryotic evolution. BioEssays 29:1239–1246, 2007. © 2007 Wiley Periodicals, Inc.  相似文献   

9.
10.
After primary endosymbiosis, massive gene transfer occurred from the genome of the cyanobacterial endosymbiont to the nucleus of the protist host cell. In parallel, a specific protein import apparatus arose for reimport of many, but not all products of the genes moved to the nuclear genome. Presequences evolved to allow recognition of plastid proteins at the envelope and their translocation to the stroma. However, plastids (and cyanobacteria) also comprise five other subcompartments. Protein sorting to the cyanobacterial thylakoid membrane, the thylakoid lumen, the inner envelope membrane, the periplasmic space, and the outer envelope membrane is achieved by prokaryotic protein translocases recognizing, e.g., signal sequences. The “conservative sorting” hypothesis postulates that these translocases remained functional in endosymbiotic organelles and obtained their passengers not only from imported proteins but also from proteins synthesized in organello. For proteins synthesized in the cytosol, a collaboration of the general import apparatus and the former prokaryotic translocase is necessary which is often reflected by the use of bipartite presequences, e.g., stroma targeting peptide and signal peptide. For plants, this concept has been experimentally proven and verified. The muroplasts from Cyanophora paradoxa, that have several features more in common with cyanobacteria than with plastids, were analyzed with the availability of the recently completed nuclear genome sequence. Interesting findings include the absence of the post-translational signal recognition particle pathway, dual Sec translocases in thylakoid and inner envelope membranes that are produced from a single set of genes, and a co-translational signal recognition pathway operating without a 4.5S RNA component.  相似文献   

11.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

12.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

13.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

14.
Abstract: Plastids with four‐membrane envelopes have evolved by several independent endosymbioses involving a eukaryotic alga as the endosymbiont and a protozoan predator as the host. It is assumed that their outermost membrane is derived from the phagosomal membrane of the host and that protein targeting to and across this membrane proceeds co‐translationally, including ER and the Golgi apparatus (e.g., chlorarachniophytes) or only ER (e.g., heterokonts). Since the two inner membranes (or the plastid envelope) of such a complex plastid are derived from the endosymbiont plastid, they are probably provided with Toc and Tic systems, enabling post‐translational passage of the imported proteins into the stroma. The third envelope membrane, or the periplastid one, originates from the endosymbiont plasmalemma, but what import apparatus operates in it remains enigmatic. Recently, Cavalier‐Smith (1999[5]) has proposed that the Toc system, pre‐existing in the endosymbiont plastid, has been relocated to the periplastid membrane, and that plastids having four envelope membranes contain two Toc systems operating in tandem and requiring the same targeting sequence, i.e., the transit peptide. Although this model is parsimonious, it encounters several serious obstacles, the most serious one resulting from the complex biogenesis of Toc75 which forms a translocation pore. In contrast to most proteins targeted to the outer membrane of the plastid envelope, this protein carries a complex transit peptide, indicating that a successful integration of the Toc system into the periplastid membrane would have to be accompanied by relocation of the stromal processing peptidase to the endosymbiont cytosol. However, such a relocation would be catastrophic because this enzyme would cleave the transit peptide off all plastid‐destined proteins, thus disabling biogenesis of the plastid compartment. Considering these difficulties, I suggest that in periplastid membranes two Toc‐independent translocation apparatuses have evolved: a porin‐like channel in chlorarachniophytes and cryptophytes, and a vesicular pathway in heterokonts and haptophytes. Since simultaneous evolution of a new transport system in the periplastid membrane and in the phagosomal one would be complicated, it is argued that plastids with four‐membrane envelopes have evolved by replacement of plastids with three‐membrane envelopes. I suggest that during the first round of secondary endosymbioses (resulting in plastids surrounded by three membranes), myzocytotically‐engulfed eukaryotic alga developed a Golgi‐mediated targeting pathway which was added to the Toc/Tic‐based apparatus of the endosymbiont plastid. During the second round of secondary endosymbioses (resulting in plastids surrounded by four membranes), phagocytotically‐engulfed eukaryotic alga exploited the Golgi pathway of the original plastid, and a new translocation system had to originate only in the periplastid membrane, although its emergence probably resulted in modification of the import machinery pre‐existing in the endosymbiont plastid.  相似文献   

15.
The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc-Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development.  相似文献   

16.
Cymbomonas tetramitiformis is a peculiar green alga that unites in one cell the abilities of photosynthesis and phagocytosis, which makes it a very useful model for the study of the evolution of plastid endosymbiosis. We have pondered over this issue and propose an evolutionary scenario of trophic strategies in eukaryotes, including primary and secondary plastid endosymbioses. C. tetramitiformis is a prototroph, just like the common ancestor of Archaeplastida was, and can synthesize most small organic molecules contrary to other eukaryotic phagotrophs, e.g. some metazoans, amoebozoans, and ciliates, which have not evolved tight endosymbiotic relationships. In order to establish a permanent photosynthetic endosymbiont they do not have to become prototrophs, but have to acquire the genes necessary for plastid retention via horizontal (including endosymbiotic) gene transfer. Such processes occurred successfully in the ancestors of eukaryotes with permanent secondary plastids and thus led to their great diversification. The preservation of phagocytosis in Cymbomonas (and some other prasinophytes as well) seems to result from nutrient deficiency in their oligotrophic habitats. This forces them to supplement their diet with phagocytized prey, in contrasts to the thecate amoeba Paulinella chromatophora, which also successfully transformed cyanobacteria into permanent organelles. Although Paulinella endosymbionts were acquired very recently in comparison to primary plastids, Paulinella has lost the ability to phagocytose, most probably due to the fact that it inhabits nutrient-rich environments, which renders the phagotrophy nonessential.  相似文献   

17.
The post-translational import of nucleus-encoded preproteins into chloroplasts occurs through multimeric translocons in the outer (Toc) and inner (Tic) membranes. The high fidelity of the protein import process is maintained by specific recognition of the transit peptide of preproteins by the coordinate activities of two homologous GTPase Toc receptors, Toc34 and Toc159. Structural and biochemical studies suggest that dimerization of the Toc receptors functions as a component of the mechanism to control access of preproteins to the membrane translocation channel of the translocon. We show that specific mutations that disrupted receptor dimerization in vitro reduced the rate of protein import in transgenic Arabidopsis compared with the wild type receptor. The mutations did not affect the GTPase activities of the receptors. Interestingly, these mutations did not decrease the initial preprotein binding at the receptors, but they reduced the efficiency of the transition from preprotein binding to membrane translocation. These data indicate that dimerization of receptors has a direct role in protein import and support a hypothesis in which receptor-receptor interactions participate in the initiation of membrane translocation of chloroplast preproteins as part of the molecular mechanism of GTP-regulated protein import.  相似文献   

18.
19.
20.
The import of protein into chloroplasts is mediated by translocon components located in the chloroplast outer (the Toc proteins) and inner (the Tic proteins) envelope membranes. To identify intermediate steps during active import, we used sucrose density gradient centrifugation and blue-native polyacrylamide gel electrophoresis (BN-PAGE) to identify complexes of translocon components associated with precursor proteins under active import conditions instead of arrested binding conditions. Importing precursor proteins in solubilized chloroplast membranes formed a two-peak distribution in the sucrose density gradient. The heavier peak was in a similar position as the previously reported Tic/Toc supercomplex and was too large to be analyzed by BN-PAGE. The BN-PAGE analyses of the lighter peak revealed that precursors accumulated in at least two complexes. The first complex migrated at a position close to the ferritin dimer (approximately 880 kDa) and contained only the Toc components. Kinetic analyses suggested that this Toc complex represented an earlier step in the import process than the Tic/Toc supercomplex. The second complex in the lighter peak migrated at the position of the ferritin trimer (approximately 1320 kDa). It contained, in addition to the Toc components, Tic110, Hsp93, and an hsp70 homolog, but not Tic40. Two different precursor proteins were shown to associate with the same complexes. Processed mature proteins first appeared in the membranes at the same fractions as the Tic/Toc supercomplex, suggesting that processing of transit peptides occurs while precursors are still associated with the supercomplex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号