首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major obstacle to anticipating the cross-species transmission of zoonotic diseases and developing novel strategies for their control is the scarcity of data informing how these pathogens circulate within natural reservoir populations. Vampire bats are the primary reservoir of rabies in Latin America, where the disease remains among the most important viral zoonoses affecting humans and livestock. Unpredictable spatiotemporal dynamics of rabies within bat populations have precluded anticipation of outbreaks and undermined widespread bat culling programs. By analysing 1146 vampire bat-transmitted rabies (VBR) outbreaks in livestock across 12 years in Peru, we demonstrate that viral expansions into historically uninfected zones have doubled the recent burden of VBR. Viral expansions are geographically widespread, but severely constrained by high elevation peaks in the Andes mountains. Within Andean valleys, invasions form wavefronts that are advancing towards large, unvaccinated livestock populations that are heavily bitten by bats, which together will fuel high transmission and mortality. Using spatial models, we forecast the pathways of ongoing VBR epizootics across heterogeneous landscapes. These results directly inform vaccination strategies to mitigate impending viral emergence, reveal VBR as an emerging rather than an enzootic disease and create opportunities to test novel interventions to manage viruses in bat reservoirs.  相似文献   

2.
Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially determined for only a few of the ~1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). In samples derived from these bats, we identified viral sequences that were similar to at least three novel group 1 CoVs, large numbers of insect and plant virus sequences, and nearly full-length genomic sequences of two novel bacteriophages. These observations suggest that bats encounter and disseminate a large assortment of viruses capable of infecting many different animals, insects, and plants in nature.  相似文献   

3.
In nature, rabies virus (RABV; genus Lyssavirus, family Rhabdoviridae) represents an assemblage of phylogenetic lineages, associated with specific mammalian host species. Although it is generally accepted that RABV evolved originally in bats and further shifted to carnivores, mechanisms of such host shifts are poorly understood, and examples are rarely present in surveillance data. Outbreaks in carnivores caused by a RABV variant, associated with big brown bats, occurred repeatedly during 2001–2009 in the Flagstaff area of Arizona. After each outbreak, extensive control campaigns were undertaken, with no reports of further rabies cases in carnivores for the next several years. However, questions remained whether all outbreaks were caused by a single introduction and further perpetuation of bat RABV in carnivore populations, or each outbreak was caused by an independent introduction of a bat virus. Another question of concern was related to adaptive changes in the RABV genome associated with host shifts. To address these questions, we sequenced and analyzed 66 complete and 20 nearly complete RABV genomes, including those from the Flagstaff area and other similar outbreaks in carnivores, caused by bat RABVs, and representatives of the major RABV lineages circulating in North America and worldwide. Phylogenetic analysis demonstrated that each Flagstaff outbreak was caused by an independent introduction of bat RABV into populations of carnivores. Positive selection analysis confirmed the absence of post-shift changes in RABV genes. In contrast, convergent evolution analysis demonstrated several amino acids in the N, P, G and L proteins, which might be significant for pre-adaptation of bat viruses to cause effective infection in carnivores. The substitution S/T242 in the viral glycoprotein is of particular merit, as a similar substitution was suggested for pathogenicity of Nishigahara RABV strain. Roles of the amino acid changes, detected in our study, require additional investigations, using reverse genetics and other approaches.  相似文献   

4.
Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative Bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics.  相似文献   

5.
Viral strain evolution and disease emergence are influenced by anthropogenic change to the environment. We investigated viral characteristics, host ecology, and landscape features in the rabies‐striped skunk disease system of the central Great Plains to determine how these factors interact to influence disease emergence. We amplified portions of the N and G genes of rabies viral RNA from 269 samples extracted from striped skunk brains throughout the distribution of two different rabies strains for which striped skunks were the reservoir. Because the distribution of these two strains overlapped on the landscape and were present in the same host population, we could evaluate how viral properties influenced epidemiological patterns in the area of sympatry. We found that South Central Skunk rabies (SCSK) exhibited intense purifying selection and high infectivity, which are both characteristics of an epizootic virus. Conversely, North Central Skunk rabies (NCSK) exhibited relaxed purifying selection and comparatively lower infectivity, suggesting the presence of an enzootic virus. The host population in the area of sympatry was highly admixed, and skunks among allopatric and sympatric areas had similar effective population sizes. Spatial analysis indicated that landscape features had minimal influence on NCSK movement across the landscape, but those same features were partial barriers to the spread of SCSK. We conclude that NCSK and SCSK have different epidemiological properties that interact differently with both host and landscape features to influence rabies spread in the central Great Plains. We suggest a holistic approach for future studies of emerging infectious diseases that includes studies of viral properties, host characteristics, and spatial features.  相似文献   

6.
Fruit bats (Pteropodidae) have received increased attention after the recent emergence of notable viral pathogens of bat origin. Their vagility hinders data collection on abundance and distribution, which constrains modeling efforts and our understanding of bat ecology, viral dynamics, and spillover. We addressed this knowledge gap with models and data on the occurrence and abundance of nectarivorous fruit bat populations at 3 day roosts in southeast Queensland. We used environmental drivers of nectar production as predictors and explored relationships between bat abundance and virus spillover. Specifically, we developed several novel modeling tools motivated by complexities of fruit bat foraging ecology, including: (1) a dataset of spatial variables comprising Eucalypt‐focused vegetation indices, cumulative precipitation, and temperature anomaly; (2) an algorithm that associated bat population response with spatial covariates in a spatially and temporally relevant way given our current understanding of bat foraging behavior; and (3) a thorough statistical learning approach to finding optimal covariate combinations. We identified covariates that classify fruit bat occupancy at each of our three study roosts with 86–93% accuracy. Negative binomial models explained 43–53% of the variation in observed abundance across roosts. Our models suggest that spatiotemporal heterogeneity in Eucalypt‐based food resources could drive at least 50% of bat population behavior at the landscape scale. We found that 13 spillover events were observed within the foraging range of our study roosts, and they occurred during times when models predicted low population abundance. Our results suggest that, in southeast Queensland, spillover may not be driven by large aggregations of fruit bats attracted by nectar‐based resources, but rather by behavior of smaller resident subpopulations. Our models and data integrated remote sensing and statistical learning to make inferences on bat ecology and disease dynamics. This work provides a foundation for further studies on landscape‐scale population movement and spatiotemporal disease dynamics.  相似文献   

7.
The common vampire bat (Desmodus rotundus) is one of three haematophagous species of bats and the only species in this genus. These New World bats prey on mammals and create significant economic impacts through transmission of rabies in areas where livestock are prevalent. Furthermore, in some portions of their range, it is not uncommon for them to prey upon humans. It is critical to the management of this species and for understanding the spread of bat rabies that detailed studies of D. rotundus population structure be conducted. To further such studies, we have characterized 12 microsatellite loci for this species.  相似文献   

8.
Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case study given their mutation rates are orders of magnitude higher than any other pathogen – as reflected by the recent emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data. The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers.  相似文献   

9.
The γ‐proteobacterium Arsenophonus and its close relatives (Arsenophonus and like organisms, ALOs) are emerging as a novel clade of endosymbionts, which are exceptionally widespread in insects. The biology of ALOs is, however, in most cases entirely unknown, and it is unclear how these endosymbionts spread across insect populations. Here, we investigate this aspect through the examination of the presence, the diversity and the evolutionary history of ALOs in 25 related species of blood‐feeding flies: tsetse flies (Glossinidae), louse flies (Hippoboscidae) and bat flies (Nycteribiidae and Streblidae). While these endosymbionts were not found in tsetse flies, we identify louse flies and bat flies as harbouring the highest diversity of ALO strains reported to date, including a novel ALO clade, as well as Arsenophonus and the recently described Candidatus Aschnera chinzeii. We further show that the origin of ALO endosymbioses extends deep into the evolutionary past of louse flies and bat flies, and that it probably played a major role in the ecological specialization of their hosts. The evolutionary history of ALOs is notably complex and was shaped by both vertical transmission and horizontal transfers with frequent host turnover and apparent symbiont replacement in host lineages. In particular, ALOs have evolved repeatedly and independently close relationships with diverse groups of louse flies and bat flies, as well as phylogenetically more distant insect families, suggesting that ALO endosymbioses are exceptionally dynamic systems.  相似文献   

10.
BackgroundAlthough rabies is endemic in Laos, genetic characterization of the viruses in this country is limited. There are growing concerns that development in the region may have increased transport of dog through Laos for regional dog meat consumption, and that this may cause spillover of the viruses from dogs brought here from other countries. This study was therefore undertaken to evaluate the current rabies situation and the genetic characteristics of rabies viruses currently circulating in Laos.MethodsWe determined the rate of rabies-positive samples by analyzing data from animal samples submitted to the Lao Ministry of Agriculture and Forestry’s National Animal Health Centre rabies laboratory from 2004 through 2011. Twenty-three rabies-positive samples were used for viral genetic characterization. Full genome sequencing was performed on two rabies viruses.ResultsRabies-positive samples increased substantially from 40.5% in 2004 to 60.2% in 2009 and continued at this level during the study period. More than 99% of the samples were from dogs, followed by cats and monkeys. Phylogenetic analyses showed that three rabies virus lineages belonging to the Southeast Asian cluster are currently circulating in Laos; these are closely related to viruses from Thailand, Cambodia and Vietnam. Lineages of the circulating Laos rabies viruses diverged from common ancestors as recently as 44.2 years and as much as 55.3 years ago, indicating periodic virus invasions.ConclusionThere is an increasing trend of rabies in Laotian animals. Similar to other rabies-endemic countries, dogs are the main viral reservoir. Three viral lineages closely related to viruses from neighboring countries are currently circulating in Laos. Data provide evidence of periodic historic exchanges of the viruses with neighboring countries, but no recent invasion.  相似文献   

11.
The occurrence of multiple introduction events, or sudden emergence from a host jump, of forest pathogens may be an important factor in successful establishment in a novel environment or on a new host; however, few studies have focused on the introduction and emergence of fungal pathogens in forest ecosystems. While Ophiognomonia clavigignenti‐juglandacearum (Oc‐j), the butternut canker fungus, has caused range‐wide mortality of butternut trees in North America since its first observation in 1967, the history of its emergence and spread across the United States and Canada remains unresolved. Using 17 single nucleotide polymorphic loci, we investigated the genetic population structure of 101 isolates of Oc‐j from across North America. Clustering analysis revealed that the Oc‐j population in North America is made up of three differentiated genetic clusters of isolates, and these genetic clusters were found to have a strong clonal structure. These results, in combination with the geographic distribution of the populations, suggest that Oc‐j was introduced or has emerged in North America on more than one occasion, and these clonal lineages have since proliferated across much of the range of butternut. No evidence of genetic recombination was observed in the linkage analysis, and conservation of the distinct genetic clusters in regions where isolates from two or more genetic clusters are present, would indicate a very minimal or non‐existent role of sexual recombination in populations of Oc‐j in North America.  相似文献   

12.
An increasingly asked question is ''can we confidently link bats with emerging viruses?''. No, or not yet, is the qualified answer based on the evidence available. Although more than 200 viruses - some of them deadly zoonotic viruses - have been isolated from or otherwise detected in bats, the supposed connections between bats, bat viruses and human diseases have been raised more on speculation than on evidence supporting their direct or indirect roles in the epidemiology of diseases (except for rabies). However, we are convinced that the evidence points in that direction and that at some point it will be proved that bats are competent hosts for at least a few zoonotic viruses. In this review, we cover aspects of bat biology, ecology and evolution that might be relevant in medical investigations and we provide a historical synthesis of some disease outbreaks causally linked to bats. We provide evolutionary-based hypotheses to tentatively explain the viral transmission route through mammalian intermediate hosts and to explain the geographic concentration of most outbreaks, but both are no more than speculations that still require formal assessment.  相似文献   

13.
中国部分地区蝙蝠携带病毒的宏基因组学分析   总被引:2,自引:0,他引:2  
蝙蝠携带有60多种病毒,其中许多对人有高度致病性.为了解中国蝙蝠携带病毒的自然本底、蝙蝠病毒的多样性和挖掘潜在的病毒病原,通过基于Solexa高通量测序的病毒宏基因组学技术对从吉林、云南、湖南采集的蝙蝠组织进行病毒组学研究,获得了11 644 232条读长(Reads),并拼接出44 872条重叠序列(Contig).通过核酸序列注释发现,其中8.2%(4 002/44 872)的重叠序列与病毒相关,能进一步注释到36个病毒科,包括19种脊椎动物病毒、6种植物病毒、4种昆虫病毒和4种噬菌体.通过对重叠序列的遗传进化分析、多序列比对显示,被注释为细小病毒、腺联病毒、博卡病毒、腺病毒、小双节RNA病毒等的重叠序列与已知病毒相似,部分序列却又呈现出明显的序列差异.通过对腺病毒和博卡病毒进一步的PCR扩增证实了此研究方法可靠.旨在了解我国蝙蝠携带病毒组的构成,对建立高效的野生动物源人兽共患病的监测方法提供参考.  相似文献   

14.
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.  相似文献   

15.
Many emerging and reemerging viruses, such as rabies, SARS, Marburg, and Ebola have bat populations as disease reservoirs. Understanding the spillover from bats to humans and other animals, and the associated health risks requires an analysis of the disease dynamics in bat populations. Traditional compartmental epizootic models, which are relatively easy to implement and analyze, usually impose unrealistic aggregation assumptions about disease-related structure and depend on parameters that frequently are not measurable in field conditions. We propose a novel combination of computational and adaptive modeling approaches that address the maintenance of emerging diseases in bat colonies through individual (intra-host) models of the response of the host to a viral challenge. The dynamics of the individual models are used to define survival, susceptibility and transmission conditions relevant to epizootics as well as to develop and parametrize models of the disease evolution into uniform and diverse populations. Applications of the proposed approach to modeling the effects of immunological heterogeneity on the dynamics of bat rabies are presented.  相似文献   

16.
Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility.  相似文献   

17.
Viral discovery studies in bats have increased dramatically over the past decade, yet a rigorous synthesis of the published data is lacking. We extract and analyze data from 93 studies published between 2007–2013 to examine factors that increase success of viral discovery in bats, and specific trends and patterns of infection across host taxa and viral families. Over the study period, 248 novel viruses from 24 viral families have been described. Using generalized linear models, at a study level we show the number of host species and viral families tested best explained number of viruses detected. We demonstrate that prevalence varies significantly across viral family, specimen type, and host taxonomy, and calculate mean PCR prevalence by viral family and specimen type across all studies. Using a logistic model, we additionally identify factors most likely to increase viral detection at an individual level for the entire dataset and by viral families with sufficient sample sizes. Our analysis highlights major taxonomic gaps in recent bat viral discovery efforts and identifies ways to improve future viral pathogen detection through the design of more efficient and targeted sample collection and screening approaches.  相似文献   

18.
Molecular epidemiology of terrestrial rabies in the former Soviet Union   总被引:8,自引:0,他引:8  
Fifty-five rabies virus isolates originating from different regions of the former Soviet Union (FSU) were compared with isolates originating from Eurasia, Africa, and North America according to complete or partial nucleoprotein (N) gene sequences. The FSU isolates formed five distinct groups. Group A represented viruses originating from the Arctic, which were similar to viruses from Alaska and Canada. Group B consisted of "Arctic-like" viruses, originating from the south of East Siberia and the Far East. Group C consisted of viruses circulating in the steppe and forest-steppe territories from the European part of Russia to Tuva and in Kazakhstan. These three phylogenetic groups were clearly different from the European cluster. Viruses of group D circulate near the western border of Russia. Their phylogenetic position is intermediate between group C and the European cluster. Group E consisted of viruses originating from the northwestern part of Russia and comprised a "northeastern Europe" group described earlier from the Baltic region. According to surveillance data, a specific host can be defined clearly only for group A (arctic fox; Alopex lagopus) and for the Far Eastern part of the group B distribution area (raccoon dog; Nyctereutes procyonoides). For other territories and rabies virus variants, the red fox (Vulpes vulpes) is the main virus reservoir. However, the steppe fox (Vulpes corsac), wolf (Canis lupus), and raccoon dog are also involved in virus circulation, depending on host population density. These molecular data, joined with surveillance information, demonstrate that the current fox rabies epizootic in the territory of the FSU developed independently of central and western Europe. No evidence of positive selection was found in the N genes of the isolates. In the glycoprotein gene, evidence of positive selection was strongly suggested in codons 156, 160, and 183. At these sites, no link between amino acid substitutions and phylogenetic placement or specific host species was detected.  相似文献   

19.
One of the fundamental unknowns in the field of influenza biology is a panoramic understanding of the role wild birds play in the global maintenance and spread of influenza A viruses. Wild aquatic birds are considered a reservoir host for all lowly pathogenic avian influenza A viruses (AIV) and thus serve as a potential source of zoonotic AIV, such as Australasian‐origin H5N1 responsible for morbidity and mortality in both poultry and humans, as well as genes that may contribute to the emergence of pandemic viruses. Years of broad, in‐depth wild bird AIV surveillance have helped to decipher key observations and ideas regarding AIV evolution and viral ecology including the trending of viral lineages, patterns of gene flow within and between migratory flyways and the role of geographic boundaries in shaping viral evolution (Bahl et al. 2009 ; Lam et al. 2012 ). While these generally ‘virus‐centric’ studies have ultimately advanced our broader understanding of AIV dynamics, recent studies have been more host‐focused, directed at determining the potential impact of host behaviour on AIV, specifically, the influence of bird migration upon AIV maintenance and transmission. A large number of surveillance studies have taken place in Alaska, United States—a region where several global flyways overlap—with the aim of detecting the introduction of novel, Australasian‐origin highly pathogenic H5N1 AIV into North America. By targeting bird species with known migration habits, long‐distance migrators were determined to be involved in the intercontinental movement of individual AIV gene segments, but not entire viruses, between the Australasian and North American flyways (Koehler et al. 2008 ; Pearce et al. 2010 ). Yet, bird movement is not solely limited to long‐distance migration, and the relationship of resident or nonmigratory and intermediate‐distance migrant populations with AIV ecology has only recently been explored by Hill et al. ( 2012 ) in this issue of Molecular Ecology. Applying a uniquely refined, multidimensional approach, Hill et al. validate the innovative use of stable isotope assays for qualifying migration status of wild mallards within the Pacific flyway. The authors reveal that AIV prevalence and diversity did not differ in wintering mallard ducks with different migration strategies, and while migrant mallards do indeed introduce AIV, these viruses do not circulate as the predominant viruses in resident birds. On the other hand, resident mallards from more temperate regions act as reservoirs, possibly contributing to the unseasonal circulation and extended transmission period of AIV. This study highlights the impact of animal behaviour on shaping viral evolution, and the unique observations made will help inform prospective AIV surveillance efforts in wild birds.  相似文献   

20.
Recent years have seen the extensive use of phylogeographic approaches to unveil the dispersal history of virus epidemics. Spatially explicit reconstructions of viral spread represent valuable sources of lineage movement data that can be exploited to investigate the impact of underlying environmental layers on the dispersal of pathogens. Here, we performed phylogeographic inference and applied different post hoc approaches to analyse a new and comprehensive data set of viral genomes to elucidate the dispersal history and dynamics of rabies virus (RABV) in Iran, which have remained largely unknown. We first analysed the association between environmental factors and variations in dispersal velocity among lineages. Second, we present, test and apply a new approach to study the link between environmental conditions and the dispersal direction of lineages. The statistical performance (power of detection, false‐positive rate) of this new method was assessed using simulations. We performed phylogeographic analyses of RABV genomes, allowing us to describe the large diversity of RABV in Iran and to confirm the cocirculation of several clades in the country. Overall, we estimate a relatively high lineage dispersal velocity, similar to previous estimates for dog rabies virus spread in northern Africa. Finally, we highlight a tendency for RABV lineages to spread in accessible areas associated with high human population density. Our analytical workflow illustrates how phylogeographic approaches can be used to investigate the impact of environmental factors on several aspects of viral dispersal dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号