首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty-five phage-resistant mutants of Lactobacillus delbrueckii subsp. lactis ATCC 15808 were selected. Thirty-three of these mutants were assigned to the Bes group, while the remaining two were grouped under the Ads designation. Bes group mutants adsorbed phage LL-H but did not allow efficient phage development. Preliminary evidence suggests that these strains exhibit a mutation that changes the DNA specificity of a restriction-modification system. The Ads group mutants did not adsorb the small isometric-head phage LL-H. The results suggest that there are at least three different types of phage receptors in L. delbrueckii: two that are specific for small isometric-head phages and one that is specific for prolate-head phage JCL1032. Five LL-H host-range mutants which could overcome the adsorption block (a-type mutants) were selected and investigated by sequencing the genes g71 and g17, which encode minor and major tail proteins, respectively. Each of the a-type mutants carried a nucleotide change at the 3' end of gene g71. No mutations were observed in gene g17. Comparison of the gene product of g71 of phage LL-H with its homolog in JCL1032 (ORF474) showed that these proteins had very similar C-terminal regions. No similarities were found at the N-terminal part of the proteins. We conclude that the C-terminal portion of the protein encoded by g71 of phage LL-H and its homolog in phage JCL1032 determines the adsorption specificities of these phages on L. delbrueckii.  相似文献   

2.
Lipoteichoic acids (LTAs) were purified from Lactobacillus delbrueckii subsp. lactis ATCC 15808 and its LL-H adsorption-resistant mutant, Ads-5, by hydrophobic interaction chromatography. L. delbrueckii phages (LL-H, the LL-H host range mutant, and JCL1032) were inactivated by these poly(glycerophosphate) type of LTAs in vitro in accordance to their adsorption to intact ATCC 15808 and Ads-5 cells.  相似文献   

3.
A general strategy was applied to implement resistance against temperate bacteriophages that infect food fermentation starters through cloning and expression of the phage repressor. Lactobacillus casei ATCC 393 and phage A2 were used to demonstrate its feasibility as milk fermentation is drastically inhibited when the strain is infected by this phage. The engineered strain Lact. casei EM40::cI, which has the A2 repressor gene (cI) integrated into the genome, was completely resistant and able to ferment milk whether phage was present or not. In addition, viable phages were eliminated from the milk, probably through adsorption to the cell wall. Finally, the integration of cI in the genome resulted in a stable resistance phenotype, being unnecessary selective pressure during milk fermentation.  相似文献   

4.
AIMS: To determine the presence, diffusion and variability of the integrase (int) gene in Lactobacillus delbrueckii ssp. lactis isolated from natural whey starters used for the production of Italian hard cheeses. METHODS AND RESULTS: A PCR-based protocol aimed to amplify an internal fragment of the int gene was optimized taking into account phage genome sequences available from public databases. Thirty-seven of the 39 strains tested showed the presence of the putative int gene. Southern blot hybridization experiments confirmed data obtained by PCR. The presence of the putative int gene was observed also in 20 of 23 Lact. delbrueckii ssp. lactis lytic phages isolated from the same starter cultures used to isolate strains. Phylogenetic analysis of partial int gene revealed a high similarity both within and between strain- and phage-derived sequences. Sixty per cent of the int-positive strains resulted inducible with mitomycin C, and two of them released active phage particles. CONCLUSIONS: Our preliminary findings seem to suggest that an important number of Lact. delbrueckii ssp. lactis strains associated with the whey starters are lysogenic. SIGNIFICANCE AND IMPACT OF THE STUDY: Further contribution to obtain a clearer picture of the complex relationship between thermophilic lactic acid bacteria phage and host in whey starters for Italian, hard-cooked cheeses.  相似文献   

5.
AIMS: To investigate the basic properties of six temperate and three virulent phages, active on Lactobacillus fermentum, on the basis of morphology, host ranges, protein composition and genome characterization. METHODS AND RESULTS: All phages belonged to the Siphoviridae family; two of them showed prolate heads. The host ranges of seven phages contained a common group of strains. SDS-PAGE protein profiles, restriction analysis of DNA and Southern blot hybridization revealed a high degree of homology between four temperate phages; partial homologies were also detected among virulent and temperate phages. Clustering derived from host range analysis was not related to the results of the DNA hybridizations. CONCLUSION: The phages investigated have common characteristics with other known phages active on the genus Lactobacillus. Sensitivity to viral infection is apparently enhanced by the presence of a resident prophage. SIGNIFICANCE AND IMPACT OF THE STUDY: These relationships contribute to the explanation for the origin of phage infection in food processes where Lact. fermentum is involved, such as sourdough fermentation.  相似文献   

6.
The phage attachment site, attP, and the integrase-encoding gene, int, are sufficient to promote site-specific integration of the temperate phage mv4 genome into the chromosome of the Lactobacillus delbrueckii host (L. Dupont, B. Boizet-Bonhoure, M. Coddeville, F. Auvray, and P. Ritzenthaler, J. Bacteriol. 177:586--595, 1995). The mv4 genome region containing these elements was compared at the nucleotide and amino acid levels with that of the closely related virulent phage LL-H. Complex DNA rearrangements were identified; a truncated integrase gene and two sites homologous to the mv4 attP site were detected in the genome of the virulent phage LL-H. These observations suggest that the two phages derive from a common temperate ancestor.  相似文献   

7.
Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.  相似文献   

8.
Lysogeny has long been proposed as an important long-term maintenance strategy for autochthonous soil bacteriophages (phages). Whole genome sequence data indicate that prophage-derived sequences pervade prokaryotic genomes, but the connection between inferred prophage sequence and an active temperate phage is tenuous. Thus, definitive evidence of phage production from lysogenic prokaryotes will be critical in determining the presence and extent of temperate phage diversity existing as prophage within bacterial genomes and within environmental contexts such as soils. This study optimized methods for systematic and definitive determination of lysogeny within a collection of autochthonous soil bacteria. Twenty bacterial isolates from a range of Delaware soil environments (five from each soil) were treated with the inducing agents mitomycin C (MC) or UV light. Six isolates (30%) carried inducible temperate phages as evidenced by an increase in virus direct counts. The magnitude of induction response was highly dependent upon specific induction conditions, and corresponding burst sizes ranged from 1 to 176. Treatment with MC for 30 min yielded the largest induction responses for three of the six lysogens. Morphological analysis revealed that four of the lysogens produced lambda-like Siphoviridae particles, whereas two produced Myoviridae particles. Additionally, pulsed-field gel electrophoresis data indicated that two of the six lysogens were polylysogens, producing more than one distinct type of phage particle. These results suggest that lysogeny is relatively common among soil bacteria.  相似文献   

9.
10.
11.
We analysed the physical structure of the DNA of phi FSW, which is a temperate phage of Lactobacillus casei S-1. A circular restriction map of the virion DNA has been constructed with three restriction endonucleases, BamHI, SalI and XhoI. Other data indicated that the phage genome was circularly permuted. In lysogens, the DNA of the prophage was found to be linearized at a specific site and integrated into a specific locus of the host genome, with the same orientation in each case, as evidenced by Southern filter hybridization. We compared the physical structure of phi FSW with its three virulent mutants. One of them had a restriction map indistinguishable from that of phi FSW and two of them contained host-derived DNA sequence(s) in a specific region of the phi FSW genome (V-region). The prophage integration site was mapped on a different segment of the phage genome to the V-region. Derivation of virulent mutants from phi FSW is discussed in relation to the physical structure of the phage genome.  相似文献   

12.
Five newly isolated mycobacteriophages--Angelica, CrimD, Adephagia, Anaya, and Pixie--have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them--with the exception of TM4--form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species.  相似文献   

13.
Bacteriophage mv4 is a temperate phage infecting Lactobacillus delbrueckii subsp. bulgaricus. During lysogenization, the phage integrates its genome into the host chromosome at the 3' end of a tRNA(Ser) gene through a site-specific recombination process (L. Dupont et al., J. Bacteriol., 177:586-595, 1995). A nonreplicative vector (pMC1) based on the mv4 integrative elements (attP site and integrase-coding int gene) is able to integrate into the chromosome of a wide range of bacterial hosts, including Lactobacillus plantarum, Lactobacillus casei (two strains), Lactococcus lactis subsp. cremoris, Enterococcus faecalis, and Streptococcus pneumoniae. Integrative recombination of pMC1 into the chromosomes of all of these species is dependent on the int gene product and occurs specifically at the pMC1 attP site. The isolation and sequencing of pMC1 integration sites from these bacteria showed that in lactobacilli, pMC1 integrated into the conserved tRNA(Ser) gene. In the other bacterial species where this tRNA gene is less or not conserved; secondary integration sites either in potential protein-coding regions or in intergenic DNA were used. A consensus sequence was deduced from the analysis of the different integration sites. The comparison of these sequences demonstrated the flexibility of the integrase for the bacterial integration site and suggested the importance of the trinucleotide CCT at the 5' end of the core in the strand exchange reaction.  相似文献   

14.
A temperate phage was isolated from emetic Bacillus cereus NCTC 11143 by mitomycin C and characterized by transmission electron microscopy and DNA and protein analyses. Whole genome sequencing of Bacillus phage 11143 was performed by GS-FLX. The phage has a dsDNA genome of 39,077 bp and a 35% G+C content. Bioinformatic analysis of the phage genome revealed 49 putative ORFs involved in replication, morphogenesis, DNA packaging, lysogeny, and host lysis. Bacillus phage 11143 could be classified as a member of the Siphoviridae family by morphology and genome structure. Genomic comparisons at the DNA and protein levels revealed homologous genetic modules with patterns and morphogenesis proteins similar to those of other Bacillus phages. Thus, Bacillus phages might have a mosaic genetic relationship.  相似文献   

15.
16.
We report a simple in vivo technique for introducing an antibiotic resistance marker into phage lambda. This technique could be used for direct selection of lysogens harboring recombinant phages from the Kohara lambda bank (a collection of ordered lambda clones carrying Escherichia coli DNA segments). The two-step method uses homologous recombination and lambda DNA packaging to replace the nonessential lambda DNA lying between the lysis genes and the right cohesive (cos) end with the neomycin phosphotransferase (npt) gene from Tn903. This occurs during lytic growth of the phage on a plasmid-containing host strain. Neomycin-resistant (npt+) recombinant phages are then selected from the lysates containing the progeny phage by transduction of a polA1 lambda lysogenic host strain to neomycin resistance. We have tested this method with two different Kohara lambda phage clones; in both cases, neomycin resistance cotransduced with the auxotrophic marker carried by the lambda clone, indicating complete genetic linkage. Linkage was verified by restriction mapping of purified DNA from a recombinant phage clone. We also demonstrate that insertion of the npt+ recombinant phages into the lambda prophage can be readily distinguished from insertion into bacterial chromosomal sequences.  相似文献   

17.
Aims: Frequency of lysogeny in Lactobacillus delbrueckii strains (from commercial and natural starters) and preliminary characterization of temperate bacteriophages isolated from them. Methods and Results: Induction of strains (a total of 16) was made using mitomycin C (MC) (0·5 μg ml−1). For 37% of the MC-treated supernatants, it was possible to detect phage particles or presence of killing activity, but only two active bacteriophages were isolated. The two temperate phages isolated were prolate-headed phages which belonged to group c of Lact. delbrueckii bacteriophages classification. Different DNA restriction patterns were obtained for each phage, while the structural protein profiles and packaging sites were identical. Distinctive one-step growth curves were exhibited by each phage. An influence of calcium ions was observed for their lysis in broth but not on the adsorption levels. Conclusions: Our study showed that lysogeny is also present in Lact. delbrueckii strains, including commercial strains. Significance and Impact of the Study: Commercial strains could be lysogenic and this fact has a great practical importance since they could contribute to the dissemination of active-phage particles in industrial environments.  相似文献   

18.
Caulobacter phage CbK has been extensively studied as a model system in virology and bacteriology. Lysogeny-related genes have been found in each CbK-like isolate, suggesting a life strategy of both lytic and lysogenic cycles. However, whether CbK-related phages can enter lysogeny is still undetermined. This study identified new CbK-like sequences and expanded the collection of CbK-related phages. A common ancestry with a temperate lifestyle was predicted for the group, however, which subsequently evolved into two clades of different genome sizes and host associations. Through the examination of phage recombinase genes, alignment of attachment sites on the phage and bacterial genomes (attPattB pairing), and the experimental validation, different lifestyles were found among the different members. A majority of clade II members retain a lysogenic lifestyle, whereas all clade I members have evolved into an obligate lytic lifestyle via a loss of the gene encoding Cre-like recombinase and the coupled attP fragment. We postulated that the loss of lysogeny may be a by-product of the increase in phage genome size, and vice versa. Clade I is likely to overcome the costs through maintaining more auxiliary metabolic genes (AMGs), particularly for those involved in protein metabolism, to strengthen host takeover and further benefit virion production.  相似文献   

19.
Phage as agents of lateral gene transfer   总被引:10,自引:0,他引:10  
When establishing lysogeny, temperate phages integrate their genome as a prophage into the bacterial chromosome. Prophages thus constitute in many bacteria a substantial part of laterally acquired DNA. Some prophages contribute lysogenic conversion genes that are of selective advantage to the bacterial host. Occasionally, phages are also involved in the lateral transfer of other mobile DNA elements or bacterial DNA. Recent advances in the field of genomics have revealed a major impact by phages on bacterial chromosome evolution.  相似文献   

20.
A total of 17 of 21 Lactobacillus strains of the subgenus Streptobacterium were lysogenic. Two different temperate phages isolated from such lysogens are very similar to Lactobacillus casei phage PL-1. The narrow host range of bacteriophage PL-1 appears to be caused by homoimmunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号