首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bothnian Sea in the northerly part of the Baltic Sea is a geologically recent brackish‐water environment, and rapid speciation is occurring in the algal community of the Bothnian Sea. We measured low‐temperature fluorescence emission spectra from the Bothnian Sea and the Norwegian Sea ecotypes of Fucus vesiculosus L., a marine macroalga widespread in the Bothnian Sea. Powdered, frozen thallus was used to obtain undistorted emission spectra. The spectra were compared with spectra measured from the newly identified species Fucus radicans Bergström et L. Kautsky, which is a close relative of F. vesiculosus and endemic to the Bothnian Sea. The spectrum of variable fluorescence was used to identify fluorescence peaks originating in PSI and PSII in this chl c–containing alga. The spectra revealed much higher PSII emission, compared to PSI emission, in the Bothnian Sea ecotype of F. vesiculosus than in F. radicans or in the Norwegian Sea ecotype of F. vesiculosus. The results suggest that more light‐harvesting chl a/c proteins serve PSII in the Bothnian Sea ecotype of F. vesiculosus than in the two other algal strains. Treatment of the Bothnian Sea ecotype of F. vesiculosus in high salinity (10, 20, and 35 practical salinity units) for 1 week did not lead to spectral changes, indicating that the measured features of the Bothnian Sea F. vesiculosus are stable and not simply a direct result of exposure to low salinity.  相似文献   

2.
Larvae ofElminius modestus (Darwin) from four different populations (Portobello, Leigh, Doubtless Bay [New Zealand] and Helgoland [North Sea]) were reared at different salinity and temperature combinations. The larvae ofE. modestus from Helgoland developed successfully at a wide range of temperature (6° to 24 °C) and salinity (20 to 50 S). Mortality was highest at 10 S; only at 12° and 18 °C did a small percentage develop to the cypris. The larvae from New Zealand were reared at a temperature range of 12°–24 °C at 20, 30 and 40 S; mortality increased in all populations at all salinities with decreasing temperature and was extremely high at 12 °C and 40 S. The temperature influence on larval duration could be described in all cases by a power function. No significant differences in temperature influences on developmental times between the tested salinities were found, except for the Portobello population at 20 S. Significant differences were found in the temperature influence on larval development between the populations from Helgoland and the North Island of New Zealand (Leigh, Doubtless Bay). No differences were found between the Helgoland and Portobello population. The pooled data for the temperature influence on the larval development of the three tested New Zealand populations at 20, 30 and 40 S and the pooled Helgoland data at 20, 30 and 40 S show highly significant differences.Larval size (stage VI) was influenced by experimental conditions. The larvae grew bigger at low temperatures and attained their maximum size at 30 S (Helgoland). There was a strong reduction in larval size at temperatures from 18° to 24 °C. The larvae of the New Zealand populations were smaller than those from Helgoland. The greatest difference in size existed between the larvae from Portobello and Helgoland.  相似文献   

3.
We studied the changes in the rate of dark respiration (DR) and structure of the cells in Ascophyllum nodosum and Fucus vesiculosus thalli during the incubation at 40, 34, 20, 10, and 2 salinity for 14 days. The changes in salinity affected the rate of DR and the structure of the thallus apical cells: the organelles swollen and were destroyed later. The effect of hyposalinity on the algae was more pronounced as compared to hypersalinity. The stress intensity directly increased with the degree of desalination. Further adaptation of the algae to low salinity enhanced DR and, hence, was an energy-dependent process. Despite higher DR rates (during the stress and adaptation) in F. vesiculosus as compared to A. nodosum, the seaweeds had similar pattern of adaptation to the variation of salinity. Different primary response of the seaweeds to 20 salinity was an important exception; apparently, the salinity around 20 is the limit of these species distribution in desalination zones.  相似文献   

4.
In the course of the ongoing global intensification and diversification of human pressures, the study of variation patterns of biological traits along environmental gradients can provide relevant information on the performance of species under shifting conditions. The pronounced salinity gradient, co‐occurrence of multiple stressors, and accelerated rates of change make the Baltic Sea and its transition to North Sea a suitable region for this type of study. Focusing on the bladderwrack Fucus vesiculosus, one of the main foundation species on hard‐bottoms of the Baltic Sea, we analyzed the phenotypic variation among populations occurring along 2,000 km of coasts subjected to salinities from 4 to >30 and a variety of other stressors. Morphological and biochemical traits, including palatability for grazers, were recorded at 20 stations along the Baltic Sea and four stations in the North Sea. We evaluated in a common modeling framework the relative contribution of multiple environmental drivers to the observed trait patterns. Salinity was the main and, in some cases, the only environmental driver of the geographic trait variation in F. vesiculosus. The decrease in salinity from North Sea to Baltic Sea stations was accompanied by a decline in thallus size, photosynthetic pigments, and energy storage compounds, and affected the interaction of the alga with herbivores and epibiota. For some traits, drivers that vary locally such as wave exposure, light availability or nutrient enrichment were also important. The strong genetic population structure in this macroalgae might play a role in the generation and maintenance of phenotypic patterns across geographic scales. In light of our results, the desalination process projected for the Baltic Sea could have detrimental impacts on F. vesiculosus in areas close to its tolerance limit, affecting ecosystem functions such as habitat formation, primary production, and food supply.  相似文献   

5.
North Sea and Baltic Sea populations ofLittorina littorea differ with respect to their vertical distribution. In the North SeaL. littorea is strictly intertidal while in the Baltic Sea maximum population densities occur in the sublittoral. Levels of infestation with larval digenetic trematodes diminish qualitatively (number of species recorded) and quantitatively (number of hosts infested) with decreasing salinity. Both the host and two parasite species —Cryptocotyle lingua andMicrophallus pygmaeus — display brackish-water submergence under conditions of reduced surface salinity.  相似文献   

6.

Aim

The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus.

Location

The Baltic Sea.

Methods

We used a species distribution model to predict climate change‐induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation.

Results

The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation.

Main conclusions

Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.  相似文献   

7.
Many of the marine species that were introduced to the Baltic Sea during the Littorina stage (c. 8500–3000 years BP), e.g. Fucus vesiculosus and F. serratus, have adapted to the present low salinity. These marine species have gone from marine conditions into lower salinity environments. In this paper we ask why the recently discovered endemic brown alga Fucus radicans shows the opposite pattern. Fucus radicans is only present in the northern parts of the Baltic Sea, the low salinity Bothnian Sea (4–6 psu). Potentially, the fitness of F. radicans might be reduced in higher salinities if it is better adapted to brackish conditions. We hypothesize, however, that the southern distribution limit of F. radicans is set by biotic factors, e.g. competition with F. vesiculosus and higher grazing pressure by Idotea balthica and not by salinity. Our results show that the reproductive output of F. radicans is limited by low salinity (4 psu) but increases in higher salinities. However, the southern distribution limit, i.e. the northern Baltic Proper, is regulated by biotic factors, where the additive effects from shading by taller F. vesiculosus thalli and grazing on F. radicans by the isopod I. balthica limit the biomass production of F. radicans. We suggest that F. radicans still maintains marine traits due to its ability to propagate clonally and is restricted to the Bothnian Sea by interactions with F. vesiculosus and I. balthica. We also propose that increased precipitation due to climate change might affect the northern range limit and that the distribution of F. radicans could be expected to shift further south into the Baltic Proper.  相似文献   

8.
The marine algal species in the Baltic Sea are few due to the low sea water salinity. One of the few species that can be found is Fucus vesiculosus. Even this species is affected by the low salinity and becomes smaller in size in the Baltic. In present work the photosynthesis of F. vesiculosus in the northern Baltic (Bothnian Sea) was compared to the photosynthesis of F. vesiculosus in the Atlantic. Oxygen evolution was measured before and after exposure to 2.3 W of UV-B (280–320 nm) radiation for 5 h, as well as after 48 h recovery in low light. The plants were kept in their own sea water salinity as well as in a changed salinity, this to examine possible correlations between salinity and photosynthesis. The results show a significant higher initial maximal photosynthesis (P max) for Atlantic plants (10.3 nmol O2 g−1 FW s−1) compared to Baltic plants (4.0 nmol O2 g−1 FW s−1). The Baltic plants were found more sensitive to UV-B with a 40–50% decrease of P max as well as a lower degree of recovery (60–70% compared to 75–95% for the Atlantic plants). The higher salinity (35 psu) had a positive effect on the Baltic F. vesiculosus with increased P max as well as increased tolerance to UV-B. The lower salinity (5 psu) had a negative effect on the Atlantic plants with a decreased P max as well as a lower tolerance to UV-B. Pigment content was found higher in Atlantic F. vesiculosus. The pigment content decreased then the Atlantic plants were transferred to 5 psu. The concentration of Chl a as well as the total content of violaxanthin, diadinoxanthin and zeaxanthin in Baltic plants increased when transferred to 35 psu. The Atlantic F. vesiculosus can not survive the low salinity in the northern Baltic (died within 8 weeks). It is likely that a long time acclimation or adaptation to low salinity has taken place for F. vesiculosus in northern Baltic. If this is an ecotypic or genotypic development it is too early to say.  相似文献   

9.
As a result of increased nutrient levels in the Baltic Sea during thepast 50 years, mass developments of filamentous algae have become a commonfeature along the Swedish east coast and deposition of organic matter has alsoincreased. To test whether these two factors have any effects on the early lifestages of Fucus vesiculosus a number of laboratory andfield studies were conducted. The amount of epilithic and epiphytic filamentousalgae on F. vesiculosus and the amount of deposited matterin the littoral zone were quantified during the two reproductive periods ofF. vesiculosus, early summer (May–June) and lateautumn (September–October). Both filamentous algae (Cladophoraglomerata) and deposited matter (introduced either before or aftersettlement of fertilized eggs) were shown to significantly decrease the numberof surviving germlings. The survival of germlings seeded on stones withfilamentous algae, or seeded on culture dishes concurrently with the lowestconcentration of deposited matter (0.1 g dm–2),was 5% or less. In the field, the amount of filamentous algae was significantlyhigher during F. vesiculosus summer reproduction, whereasthe amount of deposited matter collected in traps was significantly higherduring the period of autumn reproduction. The greatest biomass of filamentousalgae was observed at sheltered sites. Based on the negative effects offilamentous algae and deposited matter on Fucusrecruitmentand the observation of local and seasonal differences in abundance offilamentous algae and deposition, we suggest that the prerequisites for thesurvival of either summer or autumn-reproducing populations of F.vesiculosus in the Baltic Sea may differ locally.  相似文献   

10.
Rising sea surface temperatures in the North Sea have had consequential effects on not only indigenous plankton species, but also on the possibility of successful colonisation of the area by invasive plankton species. Previous studies have noted the introduction and integration into the plankton community of various phytoplankton species, but establishment of zooplankton organisms in the North Sea is less well-documented. Examining continuous plankton recorder (CPR) survey data and zooplankton results from the Helgoland Roads study, the autumn of 1999 witnessed the occurrence of the marine cladoceran Penilia avirostris in large numbers in the North Sea. The rapid appearance of the species corresponded with exceptionally warm sea surface temperatures (SSTs). Since 1999, the species has become a regular feature of the autumnal zooplankton community of the North Sea. In 2002 and 2003, the species occurred in greater abundance than recorded before. It is suggested that increased autumn SSTs have proved favourable to P. avirostris, with warmer conditions contributing to the success of the species resting eggs and aiding colonisation.Communicated by H.-D. Franke  相似文献   

11.
The peculiarities of the structure of the population of the brown alga Fucus vesiculosus in East Murman at different combinations of abiotic factors were studied. Salinity below 10‰ and high surf activity reduced the average life span of the plants (to 1 year) and caused a significant predominance of female specimens (60–90% of the fertile specimens). The proportion of female specimens increased with age. The greatest average age (3 branchings) and the highest survival of F. vesiculosus occurred in the wave-protected parts of bays. The distribution of F. vesiculosus was related to water movement intensity, salinity, and substrate type. The size-weight characteristics of F. vesiculosus thalli were decreased during maximum salinity fluctuations. The optimal conditions for this species were those existing on a weakly protected shore with short-term fluctuations of salinity (24–25‰).  相似文献   

12.
Fucus vesiculosus and F. radicans (Phaeophyceae) are important habitat-formers on rocky shores in the Bothnian Sea. While both species occur sympatrically along the entire western Bothnian Sea coast, F. radicans has been found only in the northern part of the eastern coast. According to previous studies, the two species can be distinguished based on morphology, F. radicans having narrower thalli and a bushier appearance. However, marine mapping in the eastern Bothnian Sea has revealed that high morphological variation in Fucus, partly caused by gradients in salinity and exposure, makes differentiation between the two species difficult. We studied morphological and genetic variation to find out whether the two Fucus species can be differentiated in the south-eastern Bothnian Sea, and if F. radicans occurs in the area. The study was carried out in six subareas including 350 km of coast, with a salinity gradient of 3.5–6.5 PSU, and varying wave exposure. We found a gradual change towards smaller and narrower thalli and a higher number of holdfasts in Fucus populations when moving northwards to lower salinities. Distinct Fucus morphs were often found within the study sites but the morphs were genetically differentiated only at one study site in the Skaftung subarea, suggesting the occurrence of both species. However, in the Vasa subarea the sample size for analysing genetic differentiation was low due to high clonality. In the Luvia subarea south of Skaftung, Fucus morphology corresponded to that of F. radicans in earlier studies but the population was genetically more similar to F. vesiculosus in the southern subareas. We conclude that by using only morphological characteristics it is not possible to differentiate between the two species in central and northern parts of the eastern Bothnian Sea. Based on genetic analyses, the southernmost known occurrence of F. radicans in the eastern Bothnian Sea is in Skaftung.  相似文献   

13.
Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.  相似文献   

14.
To understand the unique success of the marine seaweedFucus vesiculosus L. (PHaeophyceae) in the brackish Baltic Sea, the performance of gametes from Baltic [4.1–6.5S (Salinity)] and marine populations was studied. Sperm from BalticF. vesiculosus swam with a path velocity of c. 30–110 m/s and could fertilize eggs in waters of salinities from 4 to 33S. In their natural water, Baltic sperm were not negatively phototactic, unlike marine sperm in seawater; this should decrease the sperm:egg concentration at the seafloor and reduce the likelihood of polyspermy. Marine (Iceland, Sweden) sperm in seawater had a path velocity of c. 80–100 m/s, but performed poorly and could not fertilize eggs in natural or artificial Baltic water 6S; therefore, Baltic populations have adapted or acclimated to their brackish habitat. Baltic populations appear better adapted to their natural low salinities because, even after culturing Baltic and marine individuals in water from both the Baltic (6.5S) and the marine Skagerrak (21S), Baltic sperm were in both cases still able to swim and fertilize eggs at lower salinities (4S) than marine sperm; fertilization never occurred between marine gametes at 4–6S. However,F. vesiculosus acclimates to some salinities, since sperm from Baltic and marine males that had been cultured at 21S swam better (higher velocity, proportion that were motile and/or linearity) in marine salinities (21–33S) than when they were cultured at 6.5S. The effects of salinity on sperm motility and fertilization were osmolar rather than due to specific ionic requirements, over the tested range. The osmolalities (< c. 100 mmol/kg) at which fertilization success of Baltic gametes decreases nearly to zero correspond to the osmolality of Baltic water at the northernmost limit of distribution ofF. vesiculosus in the Baltic Sea. Therefore, the present range ofF. vesiculosus in the Baltic appears to correspond to the osmotic tolerance of the gametes. Very small natural or anthropogenic increases in ambient osmolality would be likely to cause a substantial expansion of this species into the inner Baltic.  相似文献   

15.
Zusammenfassung 1. Es wurde untersucht, welchen Einfluß kurzfristige und langfristige Salzgehaltsveränderungen auf verschiedene Standortformen der RotalgeDelesseria sanguinea und der BraunalgeFucus serratus haben. Als Kriterium des Lebenszustandes wurde die photosynthetische Leistung gewählt. Die Algen wurden folgenden Salzgehaltskonzentrationen ausgesetzt: 0, 5, 10, 15, 20, 30, 40, 50 S.2. Die Versuche ergaben, daß kurzfristige Konzentrationsveränderungen (30 min) — sowohl Erniedrigung als auch Erhöhung des Salzgehaltes — die photosynthetische Leistung stimulieren. Ein langfristiger Aufenthalt (24 Std) unter den veränderten Bedingungen bewirkt, sofern diese innerhalb der Toleranzgrenzen der Algen liegen, einen Ausgleich der anfänglichen Stimulation. Außerhalb der Toleranzgrenzen liegende Konzentrationen rufen nach der Stimulation eine Leistungsdepression hervor. Bei Rückübertragung in den Ausgangssalzgehalt sind die Depressionen teilweise reversibel.3. Im hypotonischen Milieu verhalten sich die Delesserien der verschiedenen Standorte (Helgoland, Kattegat, Kieler Bucht) gleich: in 5 S treten starke Depressionen auf. Nordsee-Delesserien sind im hypertonischen Milieu weniger empfindlich, sie zeigen noch bei 50 S eine gesteigerte photosynthetische Leistung. In diesem Bereich sind die Ostseeformen schon schwer geschädigt. Am empfindlichsten gegenüber allen Konzentrationsänderungen ist die BrackwasserformDelesseria sanguinea formalanceolata aus der Kieler Bucht.4.Fucus serratus aus dem Litoral von Helgoland zeichnet sich im Gegensatz zu der submers lebenden Form der Ostsee, die sich ähnlich wieDelesseria verhält, in allen untersuchten Konzentrationsbereichen durch eine unveränderte photosynthetische Leistung aus. Die beiden Standortformen vonFucus entsprechen gemäß der Einteilung vonMontfort (1931) dem resistenten Typ und dem Stimulations-Depressionstyp.
On the influence of salinity on photosynthetic performance of various ecotypes ofDelesseria sanguinea andFucus serratus
The phaeophyceanF. serratus and the rhodophyceanD. sanguinea came from the North Sea (30 S) and the Baltic Sea (15 S). The activity of photosynthesis was taken as a criterion of algae vitality. Experiments were made in salinity concentrations of 0, 5, 10, 15, 20, 30, 40 and 50 S. Thirty-minute exposures to sub- or supranormal salinities stimulate photosynthesis. Within their physiological salinity ranges the algae assume normal photosynthetic rates within 24 hours. Extreme salinities cause a reduction in photosynthetic activity; this reduction mostly disappears, however, after re-transfer into normal salinity conditions. At 5 S all test individuals ofDelesseria from different locations exhibit a reduction of photosynthetic rates. At 50 SDelesseria from the North Sea still show increased activity, whileDelesseria from the Baltic are already severely damaged. The brackish-water formD. sanguinea (formalanceolata) is most sensitive to salinity variations. The photosynthetic activity ofF. serratus from Helgoland does not vary in all salinities employed. The range of test salinities corresponds to that of the habitat in the littoral zone, where high salinities occur during air exposure, and low salinities, during rainfall. By contrast, inF. serratus from the Baltic Sea occurring only in the sublittoral zone, photosynthetic rates are similarly affected by salinity as inDelesseria.
  相似文献   

16.
We examined changes in the oxygen consumption rate, the number of active animals, rate of losses of salts, and the level of cell hydration under conditions of decreased salinity in the mollusks Portlandia arctica(Gray) and Nuculana pernula(O.F. Müller), inhabiting the White Sea in the deepest depths under high salinity (about 30) and negative temperatures of –1.3 to –1.4°C throughout the year. It has been shown that the mollusks demonstrate a relatively great tolerance of desalination at the organism level and a capability to regulate cell volume under decreased salinity of the environment. We concluded that the depletion of fauna of the White Sea in the deepest depths is not connected with the tolerance level of deep-sea animals to salinity fluctuations, but rather is due to environmental conditions (liquid silts and negative temperatures).  相似文献   

17.
The construction of artificial seaweed beds in the intertidal zone is a challenge due to extreme levels of physical stress. In order to provide a basis for the construction using the dispersal of microscopic juveniles, a three-way factorial experimental design was used to evaluate the tolerance of Sargassum thunbergii germlings shortly released from fertile thalli to temperature, salinity and desiccation in this study. Results revealed that temperature, salinity and desiccation significantly affected the growth and survival of germlings. Germlings showed rapid growth with relative growth rate (RGR, % day−1) over 16% when cultured at 25 °C and full immersion in normal seawater. Although growths of germlings subjected to moderate conditions were significantly inhibited, RGRs over 13% were obtained. The RGRs of germlings below 10% were observed only at 35 °C and 9 h desiccation treatments. In comparison to growth, survival was less affected by physical stress. Germlings showed low mortalities below 10% under appropriate conditions (25 °C and 30 °C combined with full immersion), and below 60% under moderate conditions, by the end of experiment. However, the mortality rates increased to over 90% under extreme conditions (9 h desiccation and 35 °C combined with full immersion in salinity of 12). These results showed that S. thunbergii germlings had high tolerance to physical stresses. In addition to the main effects, both two-way and three-way interactions between temperature, salinity and desiccation were significant. Based on the magnitude of effect, desiccation was the predominant factor affecting both growth and survival. According to the results, construction of artificial tanks in natural habitat to minimize desiccation may be an effective strategy for S. thunbergii restoration using germlings.  相似文献   

18.
The ecology and distribution of the polychaetes inhabiting the rocky interidal zone of the island of Helgoland (German Bight, North Sea) were studied at five ecologically different stations.Scolelepis squamata, Microphthalmus sczelkowii andOphryotrocha gracilis were the only typical intertidal polychaetes observed. Of the 53 polychaete species documented, eight were recorded for the first time in the German Bight. Two species and one subspecies had not been described previously. The following invironmental variables were measured and, where possible, related to the occurrence of the polychaetes: pH, redox potential, O2 diffusion rate, temperature, salinity, particle-size distribution, and amount of organic particles. In the investigation area the number of species and their frequency maxima increase horizontally from east to west. This appears to be due to the increasing diversity of microhabitats in the substratum, as well as to conditions of O2 supply or H2S presence. Vertically, the number of species increases with water depth. The potential effects of temperature and salinity on the distribution patterns are discussed.  相似文献   

19.
A decrease in salinity and temperature over the past 3000 years has presented the marine algae of the Baltic Sea with very considerable problems in adaptation. The effects of salinity upon a number of Baltic algae have been measured. The results showed cell mortality to be severe in 0, 68 and 102‰, and minimal in 6 and 11‰: there was most variation in tolerance to 34 and 51‰. The salt tolerances of Baltic marine algae have proved more hyposaline than those of British intertidal algae. Water uptake and loss in tissues of Chorda filum and Fucus vesiculosus from Baltic and British populations have been measured in response to salinity changes. The results revealed significant population differences in both live and killed tissues. Receptacle development and oogonial maturation have been observed in Baltic and British F. vesiculosus, and found to differ in seasonality. Some observations were associated with local sea temperatures but differences in the timing of receptacle initiation and in oogonial size were not. Th depauperate thallus, commonly ascribed to the effects of low salinity, was found to be a complicated phenomenon, comprising numerous attributes which are combined differently in different taxa. The morphological differences between Baltic and British marine algae were usually striking.

The marine algae of the Baltic Sea have therefore diverged in a number of ways from their N. Atlantic counterparts. The naturally high variability of these taxa has enabled them to survive the period of increasingly strong selection pressure which followed the Littorina Sea episode. Divergence seems not to have advanced to the point where speciation may be said to have occurred. The Baltic may therefore be contrasted with the much older Mediterranean Sea, which contains a large number of endemic species. Nevertheless, the Baltic is a site of very considerable evolutionary importance.  相似文献   

20.
Ruuskanen  Ari  Kiirikki  Mikko 《Hydrobiologia》2000,426(1):169-172
During the field surveys in the Bothnian Sea, i.e. towards low salinity areas (approx. 4), present authors observed that the frequency of irregularly branched Fucus vesiculosus plants increased. Salinity is known to decrease gradually towards the northern parts of the Baltic Sea. However, salinity is not steady but may fluctuate greatly on an annual and even a daily scale, and salinity can drop to zero for short periods. In order to demonstrate whether the fluctuating salinity induces irregular branching of F. vesiculosusus, a experiment was carried out in the Tvärminne archipelago, on the south coast of Finland in May–September 1997. First, plants were collected and then put into two containers both of which had a fresh water and a sea water flow throught. After 48 h of treatment, the plants were removed to the same place where they had been orginally collected. After the growing season, the plants were collected again, and the number of irregularly and normally branched tips were measured. The results shows that plants with the fresh water treatment have branched irregularly. In constrast, the control plants had only a few irregularly branched tips. This experiment brings us to conclude that low salinity during the critical growing season induces irregular branching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号