首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 966 毫秒
1.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Natural sorghum bagasse without any treatment was used to immobilize Saccharomyces cerevisiae at 0.6+/-0.2g dry cell weight (DCW)/g dry sorghum bagasse weight (DSW) through solid-state or semi-solid state incubation. The scanning electron microscopy (SEM) of the carriers revealed the friendship between yeast cells and sorghum bagasse are adsorption and embedding. The ethanol productivity of the immobilized cells was 2.24 times higher than the free cells. In repeated batch fermentation with an initial sugar concentration of 200g/L, nearly 100% total sugar was consumed after 16 h. The ethanol yield and productivity were 4.9 g/g consumed sugar on average and 5.72 g/(Lh), respectively. The immobilized cell reactor was operated over a period of 20 days without breakage of the carriers, while the free cell concentration in the effluent remained less than 5 g/L thoughout the fermentation. The maximum ethanol productivity of 16.68 g/(Lh) appeared at the dilution rate of 0.3h(-1).  相似文献   

3.
The production characteristics for Taxol (paclitaxel) using free and immobilized cells of Taxus cuspidata were investigated in a perfusion culture bioreactor. Although the cell growth was inhibited by higher dilution rates, the specific production rate of Taxol was increased by perfusion compared with that using batch operation. Perfusion cultures using a nylon-mesh cell separator for free suspension cells showed similar production profiles to those obtained using immobilized cells. Continuous Taxol production was successfully obtained at an approximate specific production rate of 0.3 mg/g DCW (dry cell weight) per day for up to 40 days. (c) 1997 John Wiley & Sons, Inc.  相似文献   

4.
Acid phosphatase production by the fungus Humicola lutea 120-5, immobilized in polyurethane sponge, was studied under semicontinuous shake flask fermentation and compared to the enzyme secretion by free cells. The effect of parameters such as the carrier content and the duration of the batch in repeated batch experiments on the phosphatase production half-life was investigated. The best results were obtained with 1.0 g of sponge cubes (about 1.0 cm per side) per culture flask using 72 h runs. In these conditions the half-life of enzyme production by immobilized biocatalyst was 15 sequential cycles (45 days) compared to three cycles (9 days) for the free mycelium. The maximal phosphatase titre registered in free cell fermentation was 2500 U/l (i.e. 100%), while the relative enzyme activity of the optimal immobilized system was over 100% during the whole half-life time of 45 days. Significant improvement (200–215%) in the yield was observed in one-third of this period or 15 days. The supernatant medium obtained at any stage of the repeated batch cultures did not contain free cells and, due to the low pH (3.0–3.5), the whole process was carried out without any bacterial contamination. In comparison with free cell fermentation, the significant improvement of the acid phosphatase production by polyurethane sponge-immobilized H. lutea mycelium as well as its operation stability was confirmed by scanning electron microscopy.  相似文献   

5.
A Pseudomonas sp. strain NGKI (NCIM 5120) capable of degrading naphthalene was immobilized in polyurethane foam. The naphthalene-degrading activity of the freely suspended cells was compared with that of immobilized cells in batches in shaken culture and in a continuous culture system in a packed-bed reactor. Increasing concentrations of naphthalene were better tolerated and more quickly degraded by immobilized cell cultures than by free cells. An initial naphthalene concentration of 25 mM was completely degraded by freely suspended cells (4 x 10(10) cfu ml(-1)) and polyurethane-foam-immobilized cells (0.8-1 x 10(12) cfu g(-1) foam cubes) after 4 days and 2 days of incubation, respectively. Free cells degraded a maximum of 30 mM naphthalene after 4 days of incubation with 50 mM naphthalene, and no further degradation was observed even after 15 days of incubation, whereas foam-immobilized cells brought about the complete degradation of 50 mM initial naphthalene after 6 days of incubation. Furthermore, with 25 mM naphthalene, the polyurethane-foam-immobilized cells were re-used 45 times over a period of 90 days without losing naphthalene-degrading activity. By contrast, with the same amount of naphthalene, alginate-, agar-, and polyacrylamide-entrapped cells could be reused for 18, 12, and 23 times over a period of 44, 28, and 50 days, respectively. During continuous degradation in a packed-bed reactor, foam-immobilized cells degraded 80 mM naphthalene at a rate of 150 ml(-1) h(-1). With the same flow rate and 40 mM naphthalene, this system operated efficiently and continuously for about 120 days, whereas the packed-bed reactor with alginate-, agar-, and polyacrylamide-entrapped cells could be operated only for 45, 40, and 60 days respectively. Thus, more efficient degradation of naphthalene could be achieved by immobilizing cells of Pseudomonas sp. strain NGK1 in polyurethane foam, rather than in the other matrices tested.  相似文献   

6.
Production of Scopadulcic acid B (SDB), a diterpene having antiviral and anti-tumour activity, was accomplished by immobilizing suspension culture-derived cells of Scoparia dulcis on Luffa sponge matrix. The yield of SDB in shake flask cultures was 50.85 mg/g of cells after 30 days of incubation while, in Luffa sponge inoculated columns SDB production was scaled up to 350.57 mg/g of cells by the 19th day of the first batch operation. The trend was maintained up to the 22nd day and the half life period of the reactor was 10 days. The bioreactor with Luffa sponge is a novel system and can be exploited for the production of many pharmaceutically active natural compounds effectively.  相似文献   

7.
Cultured Thalictrum rugosum cells were immobilized using a glass fiber substratum previously shown to provide optimum immobilization efficiency based on spontaneous adhesion mechanisms. When cultivated in shake flasks, immobilized cells exhibited decreased growth and protoberberine alkaloid production rates in comparison to freely suspended cells. Since alkaloid production is growth associated in T. rugosum, the decreased specific production rate was a function of the slower growth rate. Cells immobilized on glass fiber mats appear to be amenable for extended culture periods. Maximum biomass and protoberberine alkaloid levels were maintained for at least 14 days in immobilized cultures. In contrast, fresh weight, dry weight, and total alkaloid content decreased in suspension cultures following the linear growth phase.Glass fiber mats were incorporated in to a 4.5-L plant cell bioreactor as horizontal disks supported on a central rod. Mixing in the reactor was provided by the combined actions of a magnetic impeller and a cylindrical sparging colum. fThe magnetic impeller and a cylindrical sparging column. The entire inoculum biomass of T. rougosum, introduced as suspension, was spontaneously immobilized with in 8h. During liner phase, the growth rate of bioreactor cultivated immobilized cells (mu = 0.06 day(-1)) was 50% that immobilized cell viability in both systems was determined to be similar. The increase in specific production of protoberberine alklodis was initially similar in bioreactor-and culture period. The increase in specific production of protoberberine alkaloids was initially similar in bioreactor-and shake-flask-cultivated immobilized cells. However, the maximum specific production of bioreactor grown cultures was lower. The scale up potential of an immobilization strategy based on the spontaneous adhesion of immobilization strategy based on the spontaneous adhesion of cultured plant cells to glass fiber is demonstrated.  相似文献   

8.
Antibiotic production with Streptomyces sindenensis MTCC 8122 was optimized under submerged fermentation conditions by artificial neural network (ANN) coupled with genetic algorithm (GA) and Nelder-Mead downhill simplex (NMDS). Feed forward back-propagation ANN was trained to establish the mathematical relationship among the medium components and length of incubation period for achieving maximum antibiotic yield. The optimization strategy involved growing the culture with varying concentrations of various medium components for different incubation periods. Under non-optimized condition, antibiotic production was found to be 95 microgram/ml, which nearly doubled (176 microgram/ml) with the ANN-GA optimization. ANN-NMDS optimization was found to be more efficacious, and maximum antibiotic production (197 microgram/ml) was obtained by cultivating the cells with (g/l) fructose 2.7602, MgSO4 1.2369, (NH4)2PO4 0.2742, DL-threonine 3.069%, and soyabean meal 1.952%, for 9.8531 days of incubation, which was roughly 12% higher than the yield obtained by ANN coupled with GA under the same conditions.  相似文献   

9.
Paclitaxel and baccatin III-producing cells of Taxus baccata were immobilized within Ca(2+)-alginate beads. Under established optimum conditions for the biosynthesis of both taxanes, the yields of paclitaxel and baccatin III in shake-flask cultures of free cells increased by factors of up to 3 and 2, respectively, in the corresponding cultures of immobilized cells. Although the scale-up from shake-flask to bioreactor culture usually results in reduced productivities when both free and immobilized cells were grown in the same optimum conditions in three different bioreactor types (Stirred, Airlift, and Wave) running for 24 days in a batch mode and with the system optimized in each case, there was a considerable increase in the yields of paclitaxel and baccatin III. Among the reactors, the Stirred bioreactor was the most efficient in promoting immobilized cell production of paclitaxel, giving a content of 43.43 mg.L(-1) at 16 days of culture, equivalent to a rate of 2.71 mg.L(-1).day(-1). To our knowledge, the paclitaxel productivity obtained in this study is one of the highest reported so far by academic laboratories for Taxus species cultures in bioreactors.  相似文献   

10.
The ability of immobilized cell cultures of Aspergillus niger FETL FT3 to produce extracellular tannase was investigated. The production of enzyme was increased by entrapping the fungus in scouring mesh cubes compared to free cells. Using optimized parameters of six scouring mesh cubes and inoculum size of 1 × 106 spores/mL, the tannase production of 3.98 U/mL was obtained from the immobilized cells compared to free cells (2.81 U/mL). It was about 41.64% increment. The immobilized cultures exhibited significant tannase production stability of two repeated runs.  相似文献   

11.
The production of ligninolytic enzymes by the fungus Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725) in laboratory-scale bioreactors was studied. One bioreactor was filled with cubes of polyurethane foam and the other with cubes of nylon sponge, in order to determine the more suitable carrier to produce high ligninolytic enzyme activities by this fungus. Both cultivations were carried out in batch. Manganese-dependent peroxidase activities about 600 U lу were achieved in the bioreactor filled with cubes of nylon sponge, while up to 500 U lу were detected in that filled with cubes of polyurethane foam. Furthermore, quite high levels of laccase appeared in both cultures: maximum activities of 114 U lу and 62 U lу were obtained on nylon and polyurethane supports, respectively.  相似文献   

12.
A methanogenic population was immobilized onto agar gel, polyacrylamide gel, and collagen membrane. Agar-gel-entrapped methanogenic microorganisms gave the highest activity. The optimum agar concentration was between 1.5 and 3% (w/v), and the optimum microbial content was 20 mg wet cells/g gel. The optimum conditions for methane production by immobilized whole cells were pH 7.0–7.5 and 37–45°C. The rate of methane production was initially 1.8 μmol/g gel/hr. Methane productivity was gradually increased and reached a steady state (4.5μmol/g gel/hr) after 25 days of incubation. The immobilized methanogenic microbial population continuously evolved methane over a 90 day period. No difference in methane productivity was observed after three months of storage at 5°C. Methane was also produced by immobilized whole cells under aerobic conditions. Furthermore, carbohydrates, such as glucose, in wastewater completely decomposed by immobilized whole cells.  相似文献   

13.
Kluyveromyces marxianus UCD (FST) 55-82 cells were immobilized in Na alginate beads and used in a packed-bed bioreactor system for the continuous production of ethanol from the extract of Jerusalem artichoke tubers. Volumetric ethanol productivities of 104 and 80 g ethanol/ L/h were obtained at 80 and 92% sugar utilization, respectively. The maximum volumetric ethanol productivity of the immobilized cell bioreactor system was found to be 15 times higher than that of an ordinary-stirred-tank (CST) bioreactor using cells of K. marxianus. The immobilized cell bioreactor system was operated continuously at a constant dilution rate of 0.66 h(-1) for 12 days resulting in only an 8% loss of the original immobilized cell activity, which corresponds to an estimated half-life of ca. 72 days. The maximum specific ethanol productivity and maximum specific sugar uptake rate of the immobilized cells were found to be 0.55 g ethanol/g/biomass/h and 1.21 g sugars/g biomass/h, respectively.  相似文献   

14.
A preliminary study on the removal of cadmium by nonmetabolizing live biomass of Rhizopus oligosporus from aqueous solution is presented. The equilibrium of the process was in all cases well described by the Langmuir sorption isotherm, suggesting that the process was a chemical, equilibrated and saturable mechanism which reflected the predominantly site-specific mechanism on the cell surface. A curve of Scatchard transformation plots reflected the covalent nature of Cd2+ adsorption by the cells. The maximum cadmium uptake capacities were 34.25 mg/g for immobilized cells and 17.09 mg/g for free cells. Some factorial experiments in shake flasks were performed in order to investigate the effect of different initial cadmium concentrations and biomass concentrations on the equilibrium. Experimental results showed a reverse trend of the influence of the immobilized and free biomass concentration on the cadmium specific uptake capacity. The immobilized cells had a higher specific cadmium uptake capacity with increasing biomass concentrations compared to free cells. In a bioreactor, the cadmium uptake capacity of immobilized cells (qmax = 30.1–37.5 mg/g) was similar to that observed in shake flask experiments (qmax = 34.25 mg/g) whereas with free cells the bioreactor qmax of 4.8–13.0 mg/g; was much lower than in shake flasks (qmax = 17.09 mg/g), suggesting that cadmium biosorption by immobilized cells of R. oligosporus might be further improved in bigger reactors. EDAX and transmission electron microscopic experiments on the fungal biomass indicated that the presence of Cd2+ sequestrated to the cell wall was due to bioadsorption.  相似文献   

15.
Aspergillus terreus, isolated from rotting bagasse, showed comparable cellulolytic activities when grown either in the free or immobilized states with cellulose as the sole carbon source. The cultural and nutritional requirements for maximum cellulase production by the organism either in the free or immobilized states were similar, except an increase in the temperature optimum from 30 to 40°C, occurred upon immobilization. In the free state, the maximum filter paper hydrolase, carboxymethylcellulase and β-glucosidase activities produced were 2.1, 13.6, and 3.2 U/ml, respectively, while in the immobilized state, the levels were 1.8, 12.0, and 2.4 U/ml. Production of cellulolytic enzymes by immobilized cells was influenced by the surface area of the support material. In addition, cells in the immobilized state sustained enzyme production for a much longer period with a 4.5-fold increase in productivity during repeated batch when compared to free cells.  相似文献   

16.
T.P. WEST AND B.R.-H. STROHFUS. 1996. Cells of the fungus Aureobasidium pullulans ATCC 42023 were immobilized in sponge cubes and examined for their ability to elaborate the polysaccharide pullulan in relation to carbon source. It was found that fungal cells grown on corn syrup, sucrose or glucose as a carbon source could be immobilized in sponge cubes and that comparable cell weights and viable cell concentrations were immobilized. Independent of the carbon source tested, the immobilized fungal cells could be used at least three times for the production of polysaccharide. The immobilized A. pullulans cells elaborated the highest polysaccharide levels in the culture medium after 5–7 d of growth at 30°C.  相似文献   

17.
AIMS: Exopolysaccharides (EPS) were produced by Lactobacillus rhamnosus RW-9595M during pH-controlled batch cultures with free cells and repeated-batch cultures with cells immobilized on solid porous supports (ImmobaSil). METHODS AND RESULTS: Cultures were conducted in supplemented whey permeate (SWP) medium containing 5 or 8% (w/w) whey permeate. For free-cell batch cultures in 8% SWP medium, very high maximum cell counts (1.3 x 10(10) CFU ml(-1)) and EPS production (2350 mg l(-1)) were measured. A high EPS production (1750 mg l(-1)) was measured after four cycles for a short incubation period of only 7 h. Several methods for immobilized biomass determination based on analysis of biomass components (proteins, ATP and DNA) were tested. The DNA analysis method proved to be the most appropriate under these circumstances. This method revealed a high maximum immobilized biomass of 8.5 x 10(11) CFU ml(-1) support during repeated immobilized cell cultures in 5% SWP. The high immobilized biomass increased maximum EPS volumetric productivity (250 mg l(-1) h(-1) after 7 h culture) compared with free-cell batch cultures (110 mg l(-1) h(-1) after 18 h culture). CONCLUSIONS: High EPS productions were achieved during batch cultures of Lact. rhamnosus RW-9595M in SWP medium, exceeding 1.7 g EPS per litre. Repeated-batch cultures with immobilized cells resulted in increased EPS productivity compared with traditional free-cell cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The study clearly shows the high potential of the strain Lact. rhamnosus RW-9595M and immobilized cell technology for production of EPS as a functional food ingredient.  相似文献   

18.
Streptomyces griseoloalbus was immobilized in calcium alginate gel and the optimal immobilization parameters (concentrations of sodium alginate and calcium chloride, initial biomass and curing time) for the enhanced production of alpha-galactosidase were determined. The immobilization was most effective with 3% sodium alginate and 0.1M calcium chloride. The optimal initial biomass for immobilization was approximately 2.2g (wet wt.). The alginate-entrapped cells were advantageous because there was a twofold increase in the enzyme yield (55 U/ml) compared to the highest yield obtained with free cells (23.6 U/ml). Moreover, with immobilized cells the maximum yield was reached after 72 h of incubation in batch fermentation under optimal conditions, whereas in the case of free cells the maximum enzyme yield was obtained only after 96 h of incubation. The alginate beads had good stability and also retained 75% ability of enzyme production even after eight cycles of repeated batch fermentation. It is significant that this is the first report on whole-cell immobilization for alpha-galactosidase production.  相似文献   

19.
The effect of growth conditions (incubation time, inoculum size, initial pH value) and some nutrient concentrations on the growth and rifamycin B and SV production by free and immobilized cells of Amycolatopsis mediterranei CBS 42 575 was studied. In alginate beads, the immobilized cells behaved like the free cells, but a pronounced difference was observed in antibiotic production and cell growth. The rifamycin production by the immobilized cells was higher than that obtained by the free cells. The immobilized cells were also reused repeatedly for six batch cultivations with a fresh medium charged into flasks at the beginning of each batch. It was found that the immobilized cells were stable, and the rifamycin yield was almost constant during the first three batches and then decreased.  相似文献   

20.
Gibberellic acid (GA) production from milk permeate was studied by 28 mutants of Fusarium moniliforme, among which mutant gamma-14 was selected as the best producer. Experiments were carried out in shaker flasks and fermentative process was analyzed with free and immobilized cells. Immobilization of mutant gamma-14 cells onto loofa sponge discs was studied with respect to the optimization of the incubation temperature, initial pH, inoculum size (number of discs) and its reusability for GA production. Best yield of GA (2.40 gl(-1)) was recorded by immobilized cells under optimized cultural conditions (4 immobilized discs, 30 degrees C and pH 5). Data obtained during four reusable cycles showed high stability of GA production and reduction in the initiation time of acid production, resulting in higher levels of GA in shorter time duration. Immobilization of mutant gamma-14 cells onto loofa sponge discs, permitted repeated reuse under the specified fermentation conditions for GA production from milk permeate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号