首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 153 毫秒
1.
Esters of substituted phenoxy-phenoxy propionic acid constitute a new class of herbicides that are effective against gramineous weed and crop species. Slight changes in chemical structure alter drastically the spectrum of weeds controlled by this class of herbicides. Wheat (Triticum aestivum L.) is resistant to diclofop-methyl (methyl 2-[4-(2′,4′-dichlorophenoxy)phenoxy] propanoate) (DM) and clofop-isobutyl (iso-butyl 2-[4-(4′-phenoxy)phenoxy] propanoate) (CI), oat (Avena sativa L.) and wild oat (Avena fatua L.) are susceptible to DM but resistant to CI, and corn (Zea mays L.) is susceptible to both compounds. The antagonism of IAA-induced elongation in the coleoptile straight growth test was determined to measure biological activity of the herbicides. The basis for the differential responses by gramineous species was related to the metabolism and deioxication of the herbicides in coleoptiles. Growth of wheat coleaptiles was relatively unaffected by both compounds, oat coleoptile growth was inhibited by DM but not by CI. but corn coleoptile growth was inhibited equally by both compounds. Coleoptiles and excised shoots of the three species rapidly hydrolyzed both compounds to their respective acids (diclofop, clofop). The acids were conjugated to a water-soluble ester conjugate or they were hydroxylated in the chlorine-substituted phenyl ring and conjugated as a phenolic conjugate. Aryl hydroxylation is a detoxication mechanism in resistant plants. Plants resistant to DM or CI contained low concentrations of the parent ester and the free or bound (ester conjugate) acid and a high concentration of free or bound (phenolic conjugate) aryl hydroxylated acid in coleoptile and shoot tissues, Differential responses by the three gramineous species to DM and CI axe due apparently to differences in their detoxication mechanism. The enzyme for aryl hydroxylation in oat appears to have a higher affinity for the 4-chloro- than for the 2,4-dichloro-substituted moiety. Therefore, oat hydroxylated clofop rapidly and was tolerant to CI but the limited ability of oat to hydroxylate diclofop resulted in oat being extremely susceptible to DM.  相似文献   

2.
N-Pyridylaminomethylenebisphosphonic acids constitute a class of promising herbicides. Since their mode of action at the cellular level is still poorly understood, we studied the influence of N-pyridylaminomethylenebisphosphonic acids on plant growth, at the whole plant and undifferentiated tissue levels, using seedlings and cell suspension cultures of mono- and dicotyledonous species. These compounds exhibited strong herbicidal properties, being equipotent with the popular herbicide glyphosate. Since they also depressed buckweed anthocyanin biosynthesis, the shikimate pathway could represent a site of action of N-pyridylaminomethylenebisphosphonic acids.Abbreviations EPSP 5-enol-pyruvylshikimate-3-phosphate - 2,4-D 2,4-dichlorophenoxyacetic acid.  相似文献   

3.
ABSTRACT

Biomphalaria alexandrina snails have been used as bioindicators for freshwater qaulity and the effects of some herbicides such as butralin, glyphosate-isopropylammonium and pendimethalin). In the present study the effect of these three herbicides on snail biochemistry was examined. The results indicated that the herbicides increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the haemolymph of B. alexandrina snails and significantly decreased total protein and albumin content. Light microscopical examinations of haemocytes monolayers of B. alexandrina snails showed three different cell types (small cells, granulocytes and hyalinocytes). All three herbicides caused abnormalities in cell shapes. Flow cytometric analysis of haemocytes from B. alexandrina demonstrated that circulating haemocyte populations could be divided into two main subtypes differing in their granularity (granulocytes or hyalinocytes) and size (large and small cells). In addition, the flow cytometric analysis showed that the total number of dead haemocytes in the haemolymph was significantly increased in treated groups compared to the control group. Phagocytosis in groups treated with the herbicides was highly significantly increased compared to the control indicating a very strong response of the treated snails. The results of the alkaline comet assay of DNA damage demonstrated that these herbicides have a genotoxic effect.  相似文献   

4.
Derivatives of aminomethylenebisphosphonic acids constitute a class of promising herbicides. More than 40 N-substituted aminomethylenephosphonic acids were synthesized and evaluated for their herbicidal activity on common cress (Lepidium sativum L.) and cucumber (Cucumis sativus L.). Some of the tested compounds were found to exhibit strong herbicidal properties being equal in activity with the popular herbicide glyphosate as well as parent N-pyridylaminomethylenephosphonic acids. N-Substituted iminodi(methylenephosphonic) acids, which may be considered as close analog of glyphosate, were inactive toward test plants. Received October 25, 1996; accepted May 9, 1997  相似文献   

5.
The aim of this study was to enrich and characterise bacterial consortia from soils around a herbicide production plant through their capability to degrade the herbicides 4-(2,4-dichlorophenoxy) butyric acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy) butyric acid (MCPB). Partial 16S rRNA gene sequencing revealed members of the genera Stenotrophomonas, Brevundimonas, Pseudomonas, and Ochrobactrum in the 2,4-DB- and MCPB-degrading communities. The degradation of 2,4-DB and MCPB was facilitated by the combined activities of the community members. Some of the members were able to utilise other herbicides from the family of chlorophenoxyalkanoic acids. During degradation of 2,4-DB and MCPB, phenol intermediates were detected, indicating ether cleavage of the side chain as the initial step responsible for the breakdown. This was also verified using an indicator medium. Repeated attempts to amplify putatively conserved tfd genes by PCR indicated the absence of tfd genes among the consortia members. First step cleavage of the chlorophenoxybutyric acid herbicides is by ether cleavage in bacteria and is encoded by divergent or different tfd gene types. The isolation of mixed cultures capable of degrading 2,4-DB and MCPB will aid future investigations to determine both the metabolic route for dissimilation and the fate of these herbicides in natural environments.  相似文献   

6.
The fatty acids of the major glycerolipids from the leaves of Vicia faba and Hordeum vulgare plants treated with three different concentrations of pyridazinone derivatives were analyzed. These compounds showed multiple effects on the levels of lipids and pigments. At low concentrations, the primary effect of San 9785 was on the level of linolenic acid (18:3) in the galactolipids of V. faba, whereas the effect of San 6706 was primarily on the trans3-hexadecenoic acid (16:1) content in phosphatidylglycerol. At higher concentrations, the two compounds reduced the content of both fatty acids in the leaves. The results appear to indicate a differential effect of these herbicides on fatty acid accumulation and a difference in susceptibility of two fatty acids in the species examined. Electron microscopic studies revealed that two herbicides caused different abnormalities in V. faba chloroplast ultrastructure.  相似文献   

7.
Acetohydroxy acid synthase (AHAS) is an essential enzyme for many organisms as it catalyzes the first step in the biosynthesis of the branched-chain amino acids valine, isoleucine, and leucine. The enzyme is under allosteric control by these amino acids. It is also inhibited by several classes of herbicides, such as the sulfonylureas, imidazolinones and triazolopyrimidines, that are believed to bind to a relic quinone-binding site. In this study, a mutant allele of AHAS3 responsible for sulfonylurea resistance in a Brassica napus cell line was isolated. Sequence analyses predicted a single amino acid change (557 TrpLeu) within a conserved region of AHAS. Expression in transgenic plants conferred strong resistance to the three classes of herbicides, revealing a single site essential for the binding of all the herbicide classes. The mutation did not appear to affect feedback inhibition by the branched-chain amino acids in plants.  相似文献   

8.
Summary The effect of graded concentrations of four common ricefield herbicides (Arozin, Butachlor, Alachlor, 2,4-D) on diazotrophic growth, macromolecular contents, heterocyst frequency and tolerance potentials of Ca-alginate immobilized diazotrophic cyanobacterial isolates Nostoc punctiforme, N. calcicola, Anabaena variabilis, Gloeocapsasp., Aphanocapsa sp. and laboratory strain N. muscorum ISU (Anabaena ATCC 27893) was studied and compared with free-living cultures. Cyanobacterial isolates showed progressive inhibition of growth with increasing dosage of herbicides in both free and immobilized states. There were significant differences in the relative toxicity of the four herbicides. Arozin proved to be more growth toxic in comparison to Alachlor, Butachlor and 2,4-D. Growth performance of the immobilized cyanobacterial isolates under herbicide stress showed a similar diazotrophic growth pattern to free cells with no difference in lethal and sub-lethal dosages. However, at lethal concentrations of herbicides, the immobilized cells exhibited prolonged survivability of 14–16 days as compared to their free-living counterparts (8–12 days). The decline in growth, macromolecular contents and heterocyst frequency was found to be similar in both the states in graded dosages of herbicides. Of the test organisms, A. variabilis showed maximum natural tolerance towards all the four herbicides tested. Evidently immobilization by Ca-alginate seems to provide protection to the diazotrophic cyanobacterial inoculants to a certain extent against the growth-toxic action of herbicides.  相似文献   

9.
The effect of three herbicides—DCMU (1,1-dimethyl-3- (3,4-dichlorophenyl) -urea), Simazine (2,4-bis(ethylamino)- 6-chloro-s-triazine), and Atrazine (2-chloro-4-ethylamino-6-iso-propylamino-5-triazine)—on the induction of nitrate reduc–tase and its in vivo activity was studied in detached leaves of Hordeum vulgare L. All increased both extractable nitrate reductase activity and nitrate content. The increases occurred at optimum temperatures for growth and at several concentrations of nitrate. It was also determined that the herbicides did not protect the enzyme against inactivation in vivo. Although the extractable nitrate reductase was greater, the in vivo activity of nitrate reductase was decreased in the presence of the herbicides resulting in a higher internal concentration of nitrate. Since in viva nitrate reduction is dependent upon photosynthesis it is reasonable that reduction is decreased by these known inhibitors of photosynthesis. Hence, the effect of the inhibitors on induction of nitrate reductase activity may be secondary. The higher concentration of nitrate resulting from a decreased rate of in vivo reduction in the presence of the inhibitors could conceivably be responsible for the greater corutent of nitrate reductase.  相似文献   

10.
Experiments were conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize twelve herbicides representing several different classes including: acetanilides, triazines, ureas, uracils, and imidazoles. Incubations in aqueous culture with dextrin as carbon source and either ammonium or Casamino acids as nitrogen source resulted in transformations (>50%) of eight of the herbicides tested: alachlor, metolachlor, atrazine, prometryne, ametryne, linuron, tebuthiuron, and bromacil; the remaining four herbicides (cyanazine, diuron, metribuzin, and imazapyr) were also transformed, but to a lesser extent. In most instances, biotransformations occurred concurrently with growth and results were consistent regardless of the nitrogen source (ammonium vs. Casamino acids). However, in some instances there were differences in rates of biotransformation as a consequence of the nitrogen source (e.g. alachlor, metribuzin), suggesting the selective induction of certain metabolic enzymes; in other instances biotransformations were not associated with growth, suggesting secondary metabolism. An experiment was also conducted to assess the ability of Streptomyces (strain PS1/5) to metabolize atrazine contaminated soil. Inoculation of soil amended with 20 g/g of atrazine and 5% chitin as carbon source resulted in ca. 78% removal of atrazine within 28 days. These data suggest that Streptomyces species may be potential candidates for soil inoculation to bioremediate herbicide contaminated soils.The U.S. Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

11.
N.O. Jangaard 《Phytochemistry》1974,13(9):1769-1775
The in vitro and in vivo effects of a number of herbicides and plant growth regulators on phenylalanine ammonia-lyase (PAL) activity were investigated. The most elective in vitro inhibitors were product analogs, t-cinnamic and p-coumaric acids, and carbonyl reagents, hydroxylamine and nitromethane. Application of the herbicides diuron, dalapon, amiben, and chloropropham, to plants resulted in a decrease in the intracellular concn of PAL. The inhibitory effect of alachlor was found to be dose-responsive and somewhat specific. A correlation between PAL inhibition and herbicidal activity was observed for hydroxylamine. The cytokinin, pyranyl benzyladenine, (PBA) increased PAL activity in pigweed. The possibility of developing herbicides acting through PAL inhibition is discussed.  相似文献   

12.
The survival and infectivity of the infective juveniles of two species of entomopathogenic nematodes, Steinernema feltiae (Rhabditida: Steinernematidae) Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae), were determined after exposure for 72 h to two concentrations of the herbicides glyphosate and MCPA, as well as to the combination of the two herbicides (glyphosate + MCPA). For all herbicide treatments, concentrations and exposure times, S. feltiae was more tolerant to the herbicides than H. bacteriophora. The exposure of entomopathogenic nematodes to glyphosate + MCPA caused significantly higher mortality (26.33–57.33%) than glyphosate (0.67–15%) or MCPA (2.33–19%) alone. These results confirm the synergistic effect of the glyphosate + MCPA combination on the mortality in these nematodes. Nematode infectivity of Galleria mellonella larvae in response to the herbicides presence was evaluated in Petri dish assays containing sterile sand. Nematode infectivity was not significantly reduced by exposure to herbicides in S. feltiae but H. bacteriophora was less tolerant. Synergistic effect was obtained in the nematode mortality test but no synergistic effect was observed in the nematode infectivity assay. Our results suggest that possible synergistic effects of agrochemicals on survival of nematodes should be tested before mixing with entomopathogenic nematodes.  相似文献   

13.
Experiments were done to examine the effects of controlling wild-oats and autumn-germinating broad-leaved weeds in winter wheat, early in winter or late in spring. The herbicides used were barban (winter), chlortoluron or isoproturon (winter), and benzoylprop-ethyl, at the recommended doses and at half doses. Sequential treatments of two herbicides at half doses were also examined. All treatments were given a routine broad-leaved herbicide treatment in spring. Yields of wheat were influenced more by the time of weed removal than by the degree of control achieved. Grain yields at three sites with dense autumn broad-leaved weed populations were greatest following the use of chlortoluron or isoproturon. At three other sites with moderate to dense wild-oat populations (60 to 240 plants/m1), the use of barban at the crop three-leaf stage gave larger yields than benzoylprop-ethyl in late spring at the early stem elongation stage of the crop. Seed formation from surviving A. fatua was similar with both wild-oat herbicides. The treatment which reduced seed production of A. fatua and maintained crop yield most consistently was barban followed by benzoylprop-ethyl, each at half the normal recommended dose.  相似文献   

14.
[目的] 白花鬼针草是一种恶性外来入侵杂草,近年来已侵入农田,对农业生产及生态系统带来严重危害。为筛选防治白花鬼针草的有效除草剂,分析评价了13种常见茎叶处理除草剂对幼苗期和成株期白花鬼针草的防治效果。[方法] 采用整株盆栽法,在白花鬼针草幼苗期(2~3对叶期)和成株期(6~7对叶期)分别进行茎叶喷雾处理,每种除草剂设置3个剂量。[结果] 供试的13种除草剂中,灭生性除草剂草甘膦、草铵膦和敌草快对幼苗期和成株期的白花鬼针草防效达到100%。选择性除草剂中,麦草畏和辛酰溴苯腈对幼苗期和成株期的白花鬼针草均有较好的防效,三氯吡氧乙酸、乙羧氟草醚和氯吡嘧磺隆在高剂量下对幼苗期的白花鬼针草有较好的防除效果,但对成株期的白花鬼针草防效较差,氯氟吡氧乙酸、乳氟禾草灵、灭草松、二氯吡啶酸、乙氧氟草醚对幼苗期和成株期白花鬼针草防效均较差。[结论] 白花鬼针草对多种化学除草剂具有较强的耐药性,生育期对除草剂防除白花鬼针草的效果有较大影响。灭生性除草剂草甘膦、草铵膦、敌草快及选择性除草剂辛酰溴苯腈和麦草畏适用于防除白花鬼针草。  相似文献   

15.
Six phi (F) class glutathione transferases (GSTs) were cloned from bread wheat (Triticum aestivum L.) treated with the herbicide safener fenchlorazole ethyl and named TaGSTF1–6. Recombinant TaGSTFs were assayed for glutathione conjugating activity towards xenobiotics including herbicides and for glutathione peroxidase (GPOX) activity. TaGSTF1, which resembled ZmGSTF1, the dominant GST in maize (Zea mays), was highly active in conjugating 1-chloro-2,4-dinitrobenezene (CDNB) but had low activities towards chloroacetanilide, diphenyl ether and aryloxphenoxypropionate herbicides. TaGSTF2, TaGSTF3 and TaGSTF4 all resembled the safener-inducible ZmGSTF2, with TaGSTF2 and TaGSTF3 being highly active GPOXs and rapidly detoxifying chloroacetanilides. TaGSTF5 resembled ZmGSTF3, having limited conjugating and GPOX activity. TaGSTF6 contained both ZmGSTF1- and ZmGSTF2-like sequences but was most similar to ZmGSTF1 in detoxifying activity. The expression of TaGSTFs in wheat seedlings was enhanced upon exposure to fenchlorazole ethyl, herbicides or other chemical inducing treatments. TaGSTFs were also enhanced by treatment with the natural products caffeic acid, 7,4-dihydroxyflavone and naringenin. The CDNB-conjugating activity of TaGSTF1, and to a lesser extent TaGSTF6, was highly sensitive to inhibition by flavonoids, particularly the chalcone isoliquiritigenin. The other TaGSTFs were much less sensitive to such inhibition. It was subsequently determined that isoliquiritigenin underwent glutathione conjugation, though this reversible reaction did not require the intervention of any TaGSTF. The potential importance of GSTFs and glutathione conjugation in flavonoid metabolism is discussed.  相似文献   

16.
Miscanthus, is a promising bioenergy crop, considered superior to other bioenergy crops because of its higher water and nutrient use efficiency, cold tolerance, and higher production of biomass. Broadleaf weeds and grass weeds, cause major problems in the Miscanthus field. A field experiment was conducted in 2018 and 2019, to assess the effects of pre-emergence (alachlor and napropamide) and post-emergence herbicides (nicosulfuron, dicamba, bentazon, and glufosinate ammonium) on broadleaf and grass weeds in M. sinensis and M. sacchariflorus fields. The weed control efficiency and phytotoxicity of pre- and post-emergence herbicides were evaluated at 30 days after treatment (DAT) and compared to those of the control plots. The results showed wide variations in the susceptibility of the weed species to the treated herbicides. Treatment with nicosulfuron 40 g.a.i.ha−1 provided the most effective overall weed control (with 10% visual injury), without affecting the height and biomass of neither Miscanthus species in the field. Post-emergence herbicides such as glufosinate ammonium 400 g.a.i.ha−1 and dicamba 482 g.a.i.ha−1 were effective and inhibited the growth and density of the majority of weeds to a 100%; however, they showed significant phytotoxicity (toxicity scale of 1–10) to both species of Miscanthus. The application of glufosinate ammonium caused severe injuries to the foliar region (90% visual injury) of both Miscanthus sps. Comparatively, M. sinensis showed a slightly higher tolerance to the herbicides nicosulfuron, bentazon and napropamide with 10% visual injury at the recommended dose than M. sacchariflorus. The present study clearly showed that infestation of broadleaf and grass weeds in Miscanthus fields can cause significant damage to the growth and biomass of Miscanthus and applying pre-emergence and post-emergence herbicides effectively controls the high infestation of these weeds.  相似文献   

17.
The absorption and translocation of fenoxaprop-ethyl and imazamethabenz-methyl were investigated in wild oat (Avena fatua L.) plants grown under different temperature and light intensity conditions by using 14C tracer techniques. The phytotoxicity of both herbicides, applied as individual droplets, was also determined under similar environments. The absorption of fenoxaprop-ethyl and imazamethabenz-methyl was increased by high temperature (30/20°C) and to a lesser extent by 70% shading; low temperature (10/5°C) had limited effect on the absorption. The basipetal translocation of fenoxaprop-ethyl was not affected by high temperature, and the increase in imazamethabenz-methyl translocation at high temperature was likely the result of the increased absorption. Low temperature decreased total translocation and translocation efficiency in both fenoxaprop-ethyl and imazamethabenz-methyl. Low light intensity tended to reduce the efficiency of basipetal translocation of both herbicides. Fenoxaprop-ethyl phytotoxicity was reduced by high temperature but not by low temperature. Temperature had little effect on imazamethabenz-methyl effectiveness. Under 70% shading, the phytotoxicity of both herbicides was enhanced.Abbreviation S.E.D. standard errors of difference  相似文献   

18.
The bphK gene located in the bph operon of Burkholderia LB400 encodes a protein, BphKLB400, with significant sequence similarity to glutathione-S-transferases (GST), a group of enzymes involved in the detoxification of many endobiotic and xenobiotic substances. Comparison of the amino acid sequence of BphKLB400 with GST from other polychlorinated biphenyl (PCB)-degrading bacteria identified a number of highly conserved amino acids in the C-terminal region of the protein that may be associated with substrate specificity. In this study, two of these conserved amino acids in BphKLB400 (amino acids 152 and 180) were selected for mutation, using site-directed mutagenesis, and substrate specificity assays. BphKLB400 (wildtype and mutant) was over-expressed in Escherichia coli where the bphK gene (wildtype and mutant) is under the expression of a lac promoter and is induced by isopropyl thiogalactoside, and bacterial cell extracts were prepared for GST activity assays. Mutations at amino acids 152 and 180 were shown to affect GST activity of BphKLB400 using 1-chloro-2,4-dinitrobenzene, the model substrate for GST activity assays; 4-chlorobenzoate and 3-chlorobenzoate, intermediates in the polychlorinated biphenyl (PCB) degradation pathway, and 2,4-dichlorophenoxyacetate and atrazine, commonly used herbicides; as substrates. A BphKLB400 mutant (Ala180Pro) is identified in this study as having increased activity towards all substrates tested. This mutant may have potential in bioremediation.  相似文献   

19.
This study was conducted to evaluate the inhibitory potential of P. harmala leaf, stem and root extract on germination and growth of Avena fatua L. and Convolvulus arvensis L., as well as identification of the phytotoxic substances responsible for this activity. According to our results, the degree of toxicity of different P. harmala plant parts can be arranged in the following order: leaves > stems > roots. The two test species differed in their sensitivity to P. harmala extracts. Inhibitory effect on shoot length and seedling dry weight was more pronounced in C. arvensis, whereas higher reduction in germination, root length and total chlorophyll content occurred in A. fatua. A significant amount of water-soluble phenolic acids were found in P. harmala plant extracts. Total phenolic acids content was higher in leaf extracts when compared to that of stem or root extracts. Seven phenolic acids including gallic acid, vanillic acid, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, caffeic acid, syringic acid and ferulic acid were found in P. harmala leaf extracts. On the other hand, we identified four phenolic acids from stem (galllic acid, vanillic acid, 3,4-dihydroxybenzoic acid and caffeic acid) and root (galllic acid, 4-hydroxybenzoic acid, syringic acid and cinnamic acid) extracts. The greater number of growth inhibitors detected in the leaves might explain the stronger inhibitory activity. Overall, our results suggest that P. harmala might be used as a natural herbicide for weed control and consequently reduce dependence on synthetic herbicides.  相似文献   

20.
The appearance of biotypes of the annual grass weed black‐grass (Alopecurus myosuroides L. Huds), which are resistant to certain graminicides, is the most significant example of acquired resistance to herbicides seen so far in European agriculture. An investigation was perfomed into the basis of the specific cross‐resistance to cyclohexanedione (CHD) and aryloxyphenoxypropionoic acid (AOPP) herbicides in the ‘Notts A1’ population of A. myosuroides, which survived treatment of fields with recommended rates of AOPP herbicides. In comparison with the wild‐type ‘Rothamsted’ population, the resistant biotype showed over 100‐fold resistance to these herbicides in a hydroponic growth system. Biosynthesis of fatty acids and activity of crude extracts of acetyl‐CoA carboxylase (ACCase) were commensurately less sensitive to these herbicides in Notts A1 compared with the Rothamsted biotype. These data are consistent with the hypothesis that the highly resistant population has arisen through selection of a mutant ACCase which is much less sensitive to the AOPP and CHD graminicides. Rapidly growing cell suspension cultures established from the Notts A1 population also showed high resistance indices for CHD or AOPP herbicides compared with cultures from the Rothamsted biotype. Fatty acid biosynthesis and ACCase activity in the cell suspensions were similarly sensitive towards the graminicides to those in the foliar tissue counterparts of the resistant and sensitive populations. Moreover, purification of the main (chloroplast) isoform of acetyl‐CoA carboxylase showed that this enzyme from the Notts A1 population was over 200‐fold less sensitive towards the AOPP herbicide, quizalofop, than the equivalent isoform from the Rothamsted population. These data again fully supported the proposal that resistance in the Notts biotype is due to an insensitive acetyl‐CoA carboxylase isoform. Overall, cell suspensions were also demonstrated to be excellent tools for further investigation of the molecular basis of the high level herbicide resistance which is prone to occur in A. myosuroides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号