首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CO2 responsiveness of plants: a possible link to phloem loading   总被引:5,自引:3,他引:2  
Of the many responses of plants to elevated CO2, accumulation of total non-structural carbohydrates (TNC in % dry weight) in leaves is one of the most consistent. Insufficient sink activity or transport capacity may explain this obvious disparity between CO2 assimilation and carbohydrate dissipation and structural investment. If transport capacity contributes to the problem, phloem loading may be the crucial step. It has been hypothesized that symplastic phloem loading is less efficient than apoplastic phloem loading, and hence plant species using the symplastic pathway and growing under high light and good water supply should accumulate more TNC at any given CO2 level, but particularly under elevated CO2. We tested this hypothesis by carrying out CO2 enrichment experiments with 28 plant species known to belong to groups of contrasting phloem-loading type. Under current ambient CO2 symplastic loaders were found to accumulate 36% TNC compared with only 19% in apoplastic loaders (P=0.0016). CO2 enrichment to 600 μmol mol?1 increased TNC in both groups by the same absolute amount, bringing the mean TNC level to 41% in symplastic loaders (compared to 25% in apoplastic loaders), which may be close to TNC saturation (coupled with chlornplast malfunction). Eight tree species, ranked as symplastic loaders by their minor vein companion cell configuration, showed TNC responses more similar to those of apoplastic herbaceous loaders. Similar results are obtained when TNC is expressed on a unit leaf area basis, since mean specific leaf areas of groups were not significantly different. We conclude that phloem loading has a surprisingly strong effect on leaf tissue composition, and thus may translate into alterations of food webs and ecosystem functioning, particularly under high CO2.  相似文献   

2.
Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.  相似文献   

3.
The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly-growing, mesophytic annuals.  相似文献   

4.
The metabolic basis for observed differences in the yield response of rice to projected carbon dioxide concentrations (CO2) is unclear. In this study, three rice cultivars, differing in their yield response to elevated CO2, were grown under ambient and elevated CO2 conditions, using the free-air CO2 enrichment technology. Flag leaves of rice were used to determine (1) if manipulative increases in sink strength decreased the soluble sucrose concentration for the ‘weak’ responders and (2), whether the genetic expression of sucrose transporters OsSUT1 and OsSUT2 was associated with an accumulation of soluble sugars and the maintenance of photosynthetic capacity. For the cultivars that showed a weak response to additional CO2, photosynthetic capacity declined under elevated CO2 and was associated with an accumulation of soluble sugars. For these cultivars, increasing sink relative to source strength did not increase photosynthesis and no change in OsSUT1 or OsSUT2 expression was observed. In contrast, the ‘strong’ response cultivar did not show an increase in soluble sugars or a decline in photosynthesis but demonstrated significant increases in OsSUT1 and OsSUT2 expression at elevated CO2. Overall, these data suggest that the expression of the sucrose transport genes OsSUT1 and OsSUT2 may be associated with the maintenance of photosynthetic capacity of the flag leaf during grain fill; and, potentially, greater yield response of rice as atmospheric CO2 increases.  相似文献   

5.
Acclimation of photosynthesis to growth at elevated CO2 concentration varies markedly between species. Species functionally classified as stress-tolerators (S) and ruderals (R), are thought to be incapable, or the least capable, of responding positively in terms of growth to elevated [CO2]. Is this pattern of response also apparent in leaf photosynthesis of wild S- and R-strategists? Acclimatory loss of a photosynthetic and growth response to elevated [CO2] is assumed to reflect limitation on capacity to utilize additional photosynthate. The doubling of pre-industrial global [CO2] is expected to coincide with a 3 °C increase in mean temperature which could stimulate growth; will photosynthetic capacity at elevated [CO2] be greater when the concurrent temperature increase is simulated? Five species from natural grassland of NW Europe and of contrasting ecological strategy were grown in hemispherical greenhouses, environmentally controlled to track the external microclimate. Within a replicated design, plants were grown at (i) current ambient [CO2] and temperature, (ii) elevated [CO2] (ambient + 340 μmol mol–1) and ambient temperature, (iii) ambient [CO2] and elevated temperature (ambient + 3 °C), or (iv) elevated [CO2] and elevated temperature. After 75–104 days, the CO2 response of light-saturated rates of photosynthesis (Asat) was analysed in controlled-environment cuvettes in a field laboratory. There was no acclimatory loss of photosynthetic capacity with growth in elevated [CO2] or elevated temperature over this period in Poa alpina (S), Bellis perennis (R) or Plantago lanceolata (mixed C-S-R strategist), and a significant (P ? ? bl 0.05) increase in capacity in Helianthemum nummularium (S) and Poa annua (R). Photosynthetic rates of leaves grown and measured in elevated [CO2] were therefore significantly higher than rates for leaves grown and measured in ambient [CO2], for all species. With the exception of Poa alpina, stomatal conductance and stomatal limitation on Asat showed no acclimatory response to growth in elevated [CO2]. Carboxylation efficiency, determined from the initial slope of the response of Asat to intercellular CO2 concentration was significantly increased by elevated [CO2] and elevated temperature in H.nummularium, implying a possible increase in in vivo RubisCO activity. Increased carboxylation efficiency of this species was also reflected by an increase in the CO2- and light-saturated rates of photosynthesis, indicating an increased capacity for regeneration of the primary CO2 acceptor in photosynthesis. The results show that R-strategists and slow-growing S-strategists, are inherently capable of large increases in leaf photosynthetic capacity with growth in elevated [CO2] in contrast to expectations from growth studies. With the exception of P.annua, where there was a significant negative interaction between CO2 and temperature, concurrent increase in growth temperature had little effect on this pattern of response.  相似文献   

6.
Robert Turgeon  Esther Gowan 《Planta》1992,187(3):388-394
Sugar-synthesis and -transport patterns were analyzed in Coleus blumei Benth. leaves to determine where galactinol, raffinose, and stachyose are made and whether phloem loading includes an apoplastic (extracellular) step or occurs entirely within the symplast (plasmodesmata-connected cytoplasm). To clarify the sequence of steps leading to stachyose synthesis, a pulse (15 s) of 14CO2 was given to attached leaves followed by a 5-s to 20-min chase: sucrose was rapidly labeled while galactinol, raffinose and stachyose were labeled more slowly and, within the first few minutes, to approximately the same degree. Leaf tissue was exposed to either 14CO2 or [14C]glucose to identify the sites of synthesis of the different sugars. A 2-min exposure of peeled leaf tissue to [14C]glucose resulted in preferential labeling of the minor veins, as opposed to the mesophyll; galactinol, raffinose and stachyose were more heavily labeled than sucrose in these preparations. In contrast, when leaf tissue was exposed to 14CO2 for 2 min for preferential labeling of the mesophyll, sucrose was more heavily labeled than galactinol, raffinose or stachyose. We conclude that sucrose is synthesized in mesophyll cells while galactinol, raffinose and stachyose are made in the minorvein phloem. Competition experiments were performed to test the possibility that phloem loading involves monosaccharide uptake from the apoplast. Two saturable monosaccharide carriers were identified, one for glucose, galactose and 3-O-methyl glucose, and the other for fructose. Washing the apoplast of peeled leaf pieces with buffer or saturating levels of 3-O-methyl glucose, after providing a pulse of 14CO2, did not inhibit vein loading or change the composition of labeled sugars, and less than 0.5% of the assimilated label was recovered in the incubation medium. These and previous results (Turgeon and Gowan, 1991, Plant Physiol. 94, 1244–1249) indicate that the phloem loading pathway in Coleus is probably symplastic.Abbreviations 3-OMG 3-O-methyl glucose - PCMBS p-chloromercuribenzenesulfonic acid - SE-CCC sieve-element-companion-cell complex This research was supported by National Science Foundation Grant DCB-9104159, U.S. Department of Agriculture Competetive Grant 90000854, and Hatch funds.  相似文献   

7.
Nutrients such as phosphorus may exert a major control over plant response to rising atmospheric carbon dioxide concentration (CO2), which is projected to double by the end of the 21st century. Elevated CO2 may overcome the diffusional limitations to photosynthesis posed by stomata and mesophyll and alter the photo-biochemical limitations resulting from phosphorus deficiency. To evaluate these ideas, cotton (Gossypium hirsutum) was grown in controlled environment growth chambers with three levels of phosphate (Pi) supply (0.2, 0.05 and 0.01 mM) and two levels of CO2 concentration (ambient 400 and elevated 800 μmol mol−1) under optimum temperature and irrigation. Phosphate deficiency drastically inhibited photosynthetic characteristics and decreased cotton growth for both CO2 treatments. Under Pi stress, an apparent limitation to the photosynthetic potential was evident by CO2 diffusion through stomata and mesophyll, impairment of photosystem functioning and inhibition of biochemical process including the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxyganase and the rate of ribulose-1,5-bisphosphate regeneration. The diffusional limitation posed by mesophyll was up to 58% greater than the limitation due to stomatal conductance (gs) under Pi stress. As expected, elevated CO2 reduced these diffusional limitations to photosynthesis across Pi levels; however, it failed to reduce the photo-biochemical limitations to photosynthesis in phosphorus deficient plants. Acclimation/down regulation of photosynthetic capacity was evident under elevated CO2 across Pi treatments. Despite a decrease in phosphorus, nitrogen and chlorophyll concentrations in leaf tissue and reduced stomatal conductance at elevated CO2, the rate of photosynthesis per unit leaf area when measured at the growth CO2 concentration tended to be higher for all except the lowest Pi treatment. Nevertheless, plant biomass increased at elevated CO2 across Pi nutrition with taller plants, increased leaf number and larger leaf area.  相似文献   

8.
Stachyose: an early product of photosynthesis in squash leaves   总被引:1,自引:1,他引:0       下载免费PDF全文
It was hypothesized that stachyose is translocated by squash because stachyose is supplied to the phloem loading system by the photosynthetic system. To test this hypothesis, 14CO2 was supplied to squash leaves. The nonphosphorylated sugars containing 14C were studied. A large proportion of 14C appeared in stachyose very early in the time sequence, tending to confirm the hypothesis.  相似文献   

9.
Communities of ten species of tropical forest tree seedlings from three successional classes were grown at ambient and elevated CO2 in large open-top chambers on the edge of a forest in Panamá. Communities grew from 20?cm to approximately 2?m in height in 6 months. No enhancements in plant biomass accumulation occurred under elevated CO2 either in the whole communities or in growth of individual species. Reductions in leaf area index under elevated CO2 were observed, as were decreases in leaf nitrogen concentrations and increases in the C:N ratio of leaf tissue. Species tended to respond individualistically to elevated CO2, but some generalizations of how successional groupings responded could be made. Early and mid-successional species generally showed greater responses to elevated CO2 than late-successional species, particularly with respect to increases in photosynthetic rates and leaf starch concentrations, and reductions in leaf area ratio. Late-successional species showed greater increases in C:N ratios in response to elevated CO2 than did other species. Our results indicate that there may not be an increase in the growth of regenerating tropical forest under elevated CO2, but that there could be changes in soil nutrient availability because of reductions in leaf tissue quality, particularly in late-successional species.  相似文献   

10.
Turgeon R  Medville R 《Protoplasma》2011,248(1):173-180
Phloem loading is the process by which photoassimilates synthesized in the mesophyll cells of leaves enter the sieve elements and companion cells of minor veins in preparation for long distance transport to sink organs. Three loading strategies have been described: active loading from the apoplast, passive loading via the symplast, and passive symplastic transfer followed by polymer trapping of raffinose and stachyose. We studied phloem loading in Amborella trichopoda, a premontane shrub that may be sister to all other flowering plants. The minor veins of A. trichopoda contain intermediary cells, indicative of the polymer trap mechanism, forming an arc on the abaxial side and subtending a cluster of ordinary companion cells in the interior of the veins. Intermediary cells are linked to bundle sheath cells by highly abundant plasmodesmata whereas ordinary companion cells have few plasmodesmata, characteristic of phloem that loads from the apoplast. Intermediary cells, ordinary companion cells, and sieve elements form symplastically connected complexes. Leaves provided with 14CO2 translocate radiolabeled sucrose, raffinose, and stachyose. Therefore, structural and physiological evidence suggests that both apoplastic and polymer trapping mechanisms of phloem loading operate in A. trichopoda. The evolution of phloem loading strategies is complex and may be difficult to resolve.  相似文献   

11.
Foliar vascular anatomy and photosynthesis were evaluated for a number of summer annual species that either load sugars into the phloem via a symplastic route (Cucumis sativus L. cv. Straight Eight; Cucurbita pepo L. cv. Italian Zucchini Romanesco; Citrullus lanatus L. cv. Faerie Hybrid; Cucurbita pepo L. cv. Autumn Gold) or an apoplastic route (Nicotiana tabacum L.; Solanum lycopersicum L. cv. Brandywine; Gossypium hirsutum L.; Helianthus annuus L. cv. Soraya), as well as winter annual apoplastic loaders (Spinacia oleracea L. cv. Giant Nobel; Arabidopsis thaliana (L.) Heynhold Col‐0, Swedish and Italian ecotypes). For all summer annuals, minor vein cross‐sectional xylem area and tracheid number as well as the ratio of phloem loading cells to phloem sieve elements, each when normalized for foliar vein density (VD), was correlated with photosynthesis. These links presumably reflect (1) the xylem's role in providing water to meet foliar transpirational demand supporting photosynthesis and (2) the importance of the driving force of phloem loading as well as the cross‐sectional area for phloem sap flux to match foliar photosynthate production. While photosynthesis correlated with the product of VD and cross‐sectional phloem cell area among symplastic loaders, photosynthesis correlated with the product of VD and phloem cell number per vein among summer annual apoplastic loaders. Phloem cell size has thus apparently been a target of selection among symplastic loaders (where loading depends on enzyme concentration within loading cells) versus phloem cell number among apoplastic loaders (where loading depends on membrane transporter numbers).  相似文献   

12.
A three-step screening method was developed to identify the mode of phloem loading in intact leaves. Phloem loading of 14CO2-derived photosynthate was challenged by p-chloromercuribenzenesulfonic acid (PCMBS) in leaves of dicotyledons with either a symplasmic (type 1, with intermediary cells as companion cells) or apoplasmic (type 2b, with transfer cells as companion cells) minor-vein configuration. Firstly, photosynthate export as the result of phloem loading was measured by collection of phloem exudate from the petiole. The PCMBS had virtually no effect on photosynthate export in representatives of type-1 families (Lamiaceae, Lythraceae, Onagraceae, Saxifragaceae). In contrast, photosynthate export was strongly reduced by PCMBS in representatives of type-2b families (Asteraceae, Balsaminaceae, Dipsacaceae, Linaceae, Tropaeolaceae, Valerianaceae) and type-2b members of polytypical families (Fabaceae, Scrophulariaceae). Secondly, densitometric measurements of leaf autoradiographs demonstrated that the contrast between the mesophyll and the lower-order veins was hardly affected by PCMBS treatment in type-1 species, whereas PCMBS strongly reduced the contrast in type-2b species. Thirdly, separate 14C-radioassays of vein and mesophyll tissues confirmed this observation. The three-step procedure thus revealed a strong and consistent reduction of phloem loading by PCMBS in type-2b species which was absent in type-1 species. In conclusion, phloem loading in type-2b species occurs via the apoplast and type-1 species execute an alternative — most likely symplasmic — mode of phloem loading.Abbreviations PCMBS p-chloromercuribenzenesulfonic acid - SE/CC-complex sieve element/companion cell complex We gratefully acknowledge the expert help of Dr. Maarten Terlou, Department of Image Processing and Design, University of Utrecht, in carrying out the densitometric measurements.  相似文献   

13.
The photosynthetic response of Larrea tridentata Cav., an evergreen Mojave Desert shrub, to elevated atmospheric CO2 and drought was examined to assist in the understanding of how plants from water-limited ecosystems will respond to rising CO2. We hypothesized that photosynthetic down-regulation would disappear during periods of water limitation, and would, therefore, likely be a seasonally transient event. To test this we measured photosynthetic, water relations and fluorescence responses during periods of increased and decreased water availability in two different treatment implementations: (1) from seedlings exposed to 360, 550, and 700 μmol mol–1 CO2 in a glasshouse; and (2) from intact adults exposed to 360 and 550 μmol mol–1 CO2 at the Nevada Desert FACE (Free Air CO2 Enrichment) Facility. FACE and glasshouse well-watered Larrea significantly down-regulated photosynthesis at elevated CO2, reducing maximum photosynthetic rate (Amax), carboxylation efficiency (CE), and Rubisco catalytic sites, whereas droughted Larrea showed a differing response depending on treatment technique. Amax and CE were lower in droughted Larrea compared with well-watered plants, and CO2 had no effect on these reduced photosynthetic parameters. However, Rubisco catalytic sites decreased in droughted Larrea at elevated CO2. Operating Ci increased at elevated CO2 in droughted plants, resulting in greater photosynthetic rates at elevated CO2 as compared with ambient CO2. In well-watered plants, the changes in operating Ci, CE and Amax resulted in similar photosynthetic rates across CO2 treatments. Our results suggest that drought can diminish photosynthetic down-regulation to elevated CO2 in Larrea, resulting in seasonally transient patterns of enhanced carbon gain. These results suggest that water status may ultimately control the photosynthetic response of desert systems to rising CO2.  相似文献   

14.
Rasineni GK  Guha A  Reddy AR 《Plant science》2011,181(4):428-438
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 μmol mol−1) or used single large addition of CO2 (500-600 μmol mol−1). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 μmol mol−1). Net photosynthetic rate of Gmelina was ∼30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in FV/FM, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered ∼2100 g tree−1 carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatory down-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 μmol mol−1 CO2.  相似文献   

15.
Few studies have investigated the effects of elevated CO2 on the physiology of symbiotic N2-fixing trees. Tree species grown in low N soils at elevated CO2 generally show a decline in photosynthetic capacity over time relative to ambient CO2 controls. This negative adjustment may be due to a reallocation of leaf N away from the photosynthetic apparatus, allowing for more efficient use of limiting N. We investigated the effect of twice ambient CO2 on net CO2 assimilation (A), photosynthetic capacity, leaf dark respiration, and leaf N content of N2-fixing Alnus glutinosa (black alder) grown in field open top chambers in a low N soil for 160 d. At growth CO2, A was always greater in elevated compared to ambient CO2 plants. Late season A vs. internal leaf p(CO2) response curves indicated no negative adjustment of photosynthesis in elevated CO2 plants. Rather, elevated CO2 plants had 16% greater maximum rate of CO2 fixation by Rubisco. Leaf dark respiration was greater at elevated CO2 on an area basis, but unaffected by CO2 on a mass or N basis. In elevated CO2 plants, leaf N content (μg N cm?2) increased 50% between Julian Date 208 and 264. Leaf N content showed little seasonal change in ambient CO2 plants. A single point acetylene reduction assay of detached, nodulated root segments indicated a 46% increase in specific nitrogenase activity in elevated compared to ambient CO2 plants. Our results suggest that N2-fixing trees will be able to maintain high A with minimal negative adjustment of photosynthetic capacity following prolonged exposure to elevated CO2 on N-poor soils.  相似文献   

16.
Eguchi  N.  Fukatsu  E.  Funada  R.  Tobita  H.  Kitao  M.  Maruyama  Y.  Koike  T. 《Photosynthetica》2004,42(2):173-178
Photosynthetic traits of two-year-old Japanese larch seedlings (Larix kaempferi Carr.) grown at elevated CO2 concentrations were studied in relation to structural changes in the needles. Seedlings were grown at two CO2 concentrations, 360 (AC) and 720 (EC) mol mol–1 at high and low nutrient supply rates, high N (HN) and low N (LN). The photosynthetic capacity fell significantly in EC+LN, but increased significantly in EC+HN. Since the mesophyll surface area exposed to intercellular space per unit leaf area (Ames/A) is correlated with the photosynthetic rate, we measured Ames/A for larch needles growing in EC. Changes of Ames/A in both EC+HN and EC+LN were very similar to the changes in photosynthetic capacity. This suggests that the changes of Ames/A in EC probably caused the changes in the photosynthetic capacity. The changes of Ames/A in EC were attributed to changes in the mesophyll cell size and mesophyll cell number. The photosynthetic capacity in EC can be explained by taking morphological and structural adaptations into account as well as biochemical factors.  相似文献   

17.
Determining underlying physiological patterns governing plant productivity and diversity in grasslands are critical to evaluate species responses to future environmental conditions of elevated CO2 and nitrogen (N) deposition. In a 9‐year experiment, N was added to monocultures of seven C3 grassland species exposed to elevated atmospheric CO2 (560 μmol CO2 mol?1) to evaluate how N addition affects CO2 responsiveness in species of contrasting functional groups. Functional groups differed in their responses to elevated CO2 and N treatments. Forb species exhibited strong down‐regulation of leaf Nmass concentrations (?26%) and photosynthetic capacity (?28%) in response to elevated CO2, especially at high N supply, whereas C3 grasses did not. Hence, achieved photosynthetic performance was markedly enhanced for C3 grasses (+68%) in elevated CO2, but not significantly for forbs. Differences in access to soil resources between forbs and grasses may distinguish their responses to elevated CO2 and N addition. Forbs had lesser root biomass, a lower distribution of biomass to roots, and lower specific root length than grasses. Maintenance of leaf N, possibly through increased root foraging in this nutrient‐poor grassland, was necessary to sustain stimulation of photosynthesis under long‐term elevated CO2. Dilution of leaf N and associated photosynthetic down‐regulation in forbs under elevated [CO2], relative to the C3 grasses, illustrates the potential for shifts in species composition and diversity in grassland ecosystems that have significant forb and grass components.  相似文献   

18.
F. Yoshie  S. Kawano 《Oecologia》1986,71(1):6-11
Summary Seasonal changes in photosynthetic capacity, and photosynthetic responses to intercellular CO2 concentration and irradiance were investigated under laboratory conditions on intact leaves of Pachysandra terminalis. Photosynthetic capacity and stomatal conductance under saturating light intensity and constant water vapor pressure deficit showed almost the same seasonal trend. They increased from early June just after the expansion of leaves, reached the maximum in late-Septemer, and then decreased to winter. In over-wintering leaves they recovered and increased immediately after snow-melting, reached a first maximum in late April, and then decreased to early July in response to the reduction of light intensity on the forest floor. There-after, they increased from mid August, reached a second maximum in late September, and then decreased to winter. The parallel changes of photosynthesis and stomatal conductane indicate a more or less constant intercellular CO2 concentration throughout the year. The calculated values of relative stomatal limitation of photosynthesis were nearly constant throughout the year, irrespective of leaf age. The results indicate that the seasonal changes in light-saturated photosynthetic capacity are not due to a change of stomatal conductance, but to a change in the photosynthetic capacity of mesophyll. Indeed, carboxylation efficiency assessed by the inital slope of the Ci-photosynthesis curve changed in proportion to seasonal changes of the photosynthetic capacity in both current-year and over-wintered leaves. High photosynthetic capacity in current-year leaves as compared with one-year-old leaves was also due to the high photosynthetic capacity of mesophyll. Nevertheless, stomatal conductance changed in proportion to photosynthetic capacity, indicating that stomatal conductance is regulated by the mesophyll photosynthetic capacity such that the intercellular CO2 concentrations are maintained constant. The quantum yield also changed seasonally parallel with that in the photosynthetic capacity.Contribution No. 2893 from the Institute of Low Temperature Science  相似文献   

19.
The endemic Hawaiian species of Scaevola and Euphorbia grow in a wide variety of native habitats and exhibit a wide range of variation in photosynthetic responses. Light-saturated photosynthetic capacities range from 12.0 to 24.7 μmol CO2 m−-2 s−-1 in the Scaevola species and from 18.2 to 51.4 μmol CO2 m−-2 s−-1 in the Euphorbia species. Within each genus, differences in light-saturated photosynthetic capacity are paralleled by differences in mesophyll and leaf conductances to CO2. Within each habitat, the C4 Euphorbia species exhibits a significantly higher photosynthetic capacity and a significantly higher mesophyll conductance than the corresponding C3 Scaevola species. These differences are greatest in the dry scrub habitat and least in the wet forest habitat. One photosynthetic characteristic that exhibits little variation among the species within each genus, yet that exhibits a consistently large difference between the species within each habitat, is photosynthetic water-use efficiency. The C4 Euphorbia species possess water-use efficiencies that are 2–3½ times as high as those of the C3 Scaevola species, regardless of whether these species are native to very dry or very wet habitats. At present, the ecological significance of this large inherent difference in photosynthetic water-use efficiency is unknown. Indeed, it appears that neither photosynthetic pathway has imposed any major inherent constraints on the ability of the Scaevola and Euphorbia species to diversify into a wide variety of habitats.  相似文献   

20.
Photosynthesis in C3 plants is CO2 limited and therefore any increase in Rubisco carboxylation substrate may increase net CO2 fixation, unless plants experience acclimation or other limitations. These aspects are largely unexplored in grapevine. Photosynthesis analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the decreasing photosynthesis observed in Tempranillo grapevines (Vitis vinifera) from veraison to ripeness, modulated by CO2, temperature and water availability. Photosynthesis and photosystem II photochemistry decreased from veraison to ripeness. The elevated CO2 and temperature increased photosynthesis, but transiently, in both well irrigated (WI) and water‐stressed plants. Photosynthetic rates were maxima 1 week after the start of elevated CO2 and temperature treatments, but differences with treatments of ambient conditions disappeared with time. There were not marked changes in leaf water status, leaf chlorophyll or leaf protein that could limit photosynthesis at ripeness. Leaf total soluble sugars remained at ripeness as high as 2 weeks after the start of treatments. On the other hand, and as expected, CO2 diffusional limitations impaired photosynthesis in grapevine plants grown under water scarcity, stomatal and mesophyll conductances to CO2 decreased and in turn low chloroplastic CO2 concentrations limited photosynthetic CO2 fixation. In summary, photochemistry and photosynthesis from veraison to ripeness in Tempranillo grapevine were dominated by a developmental‐related decreasing trend that was only transiently influenced by elevated CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号