首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Dictyoptera, comprising Blattaria, Isoptera, and Mantodea, are diverse in appearance and life history, and are strongly supported as monophyletic. We downloaded COII, 16S, 18S, and 28S sequences of 39 dictyopteran species from GenBank. Ribosomal RNA sequences were aligned manually with reference to secondary structure. We included morphological data (maximum of 175 characters) for 12 of these taxa and for an additional 15 dictyopteran taxa (for which we had only morphological data). We had two datasets, a 59‐taxon dataset with five outgroup taxa, from Phasmatodea (2 taxa), Mantophasmatodea (1 taxon), Embioptera (1 taxon), and Grylloblattodea (1 taxon), and a 62‐taxon dataset with three additional outgroup taxa from Plecoptera (1 taxon), Dermaptera (1 taxon) and Orthoptera (1 taxon). We analysed the combined molecular?morphological dataset using the doublet and MK models in Mr Bayes , and using a parsimony heuristic search in paup . Within the monophyletic Mantodea, Mantoida is recovered as sister to the rest of Mantodea, followed by Chaeteessa; the monophyly of most of the more derived families as defined currently is not supported. We recovered novel phylogenetic hypotheses about the taxa within Blattodea (following Hennig, containing Isoptera). Unique to our study, one Bayesian analysis places Polyphagoidea as sister to all other Dictyoptera; other analyses and/or the addition of certain orthopteran sequences, however, place Polyphagoidea more deeply within Dictyoptera. Isoptera falls within the cockroaches, sister to the genus Cryptocercus. Separate parsimony analyses of independent gene fragments suggest that gene selection is an important factor in tree reconstruction. When we varied the ingroup taxa and/or outgroup taxa, the internal dictyopteran relationships differed in the position of several taxa of interest, including Cryptocercus, Polyphaga, Periplaneta and Supella. This provides further evidence that the choice of both outgroup and ingroup taxa greatly affects tree topology.  相似文献   

2.
Kånneby, T., Todaro, M. A., Jondelius, U. (2012). Phylogeny of Chaetonotidae and other Paucitubulatina (Gastrotricha: Chaetonotida) and the colonization of aquatic ecosystems. —Zoologica Scripta, 42, 88–105. Chaetonotidae is the largest family within Gastrotricha with almost 400 nominal species represented in both freshwater and marine habitats. The group is probably non‐monophyletic and suffers from a troubled taxonomy. Current classification is to a great extent based on shape and distribution of cuticular structures, characters that are highly variable. We present the most densely sampled molecular study so far where 17 of the 31 genera belonging to Chaetonotida are represented. Bayesian and maximum likelihood approaches based on 18S rDNA, 28S rDNA and COI mtDNA are used to reconstruct relationships within Chaetonotidae. The use of cuticular structures for supra‐specific classification within the group is evaluated and the question of dispersal between marine and freshwater habitats is addressed. Moreover, the subgeneric classification of Chaetonotus is tested in a phylogenetic context. Our results show high support for a clade containing Dasydytidae nested within Chaetonotidae. Within this clade, only three genera are monophyletic following current classification. Genera containing both marine and freshwater species never form monophyletic clades and group with other species according to habitat. Marine members of Aspidiophorus appear to be the sister group of all other Chaetonotidae and Dasydytidae, indicating a marine origin of the clade. Halichaetonotus and marine Heterolepidoderma form a monophyletic group in a sister group relationship to freshwater species, pointing towards a secondary invasion of marine environments of these taxa. Our study highlights the problems of current classification based on cuticular structures, characters that show homoplasy for deeper relationships.  相似文献   

3.
Parsimony analyses of ndhF chloroplast gene sequences were undertaken for 15 species of Acanthaceae and nine representative outgroup species. In addition, parsimony analyses of rbcL sequences were undertaken for 12 species of Acanthaceae and the same nine outgroup species as for ndhF. The results indicate that ndhF provides more informative characters and greater systematic resolution at this hierarchical level than rbcL. The ndhF analyses demonstrate that Elytraria and Thunbergia are successive sister taxa to all Acanthaceae taxa that have retinacula and explosive fruits. These data also demonstrate that taxa with both retinacula and explosive fruits can be subdivided further into two monophyletic groups that correspond to taxa with and without cystoliths. Within the group with cystoliths three putatively monophyletic groups correspond to taxa possessing quincuncial, left contort, and ascending-cochlear corolla aestivation patterns. The results of the rbcL analysis provide less systematic resolution than ndhF but do contain several congruent arrangements of taxa within Acanthaceae.  相似文献   

4.
5.
The first comprehensive analysis of higher‐level phylogeny of the order Hymenoptera is presented. The analysis includes representatives of all extant superfamilies, scored for 392 morphological characters, and sequence data for four loci (18S, 28S, COI and EF‐1α). Including three outgroup taxa, 111 terminals were analyzed. Relationships within symphytans (sawflies) and Apocrita are mostly resolved. Well supported relationships include: Xyeloidea is monophyletic, Cephoidea is the sister group of Siricoidea + [Xiphydrioidea + (Orussoidea + Apocrita)]; Anaxyelidae is included in the Siricoidea, and together they are the sister group of Xiphydrioidea + (Orussoidea + Apocrita); Orussoidea is the sister group of Apocrita, Apocrita is monophyletic; Evanioidea is monophyletic; Aculeata is the sister group of Evanioidea; Proctotrupomorpha is monophyletic; Ichneumonoidea is the sister group of Proctotrupomorpha; Platygastroidea is sister group to Cynipoidea, and together they are sister group to the remaining Proctotrupomorpha; Proctotrupoidea s. str. is monophyletic; Mymarommatoidea is the sister group of Chalcidoidea; Mymarommatoidea + Chalcidoidea + Diaprioidea is monophyletic. Weakly supported relationships include: Stephanoidea is the sister group of the remaining Apocrita; Diaprioidea is monophyletic; Ceraphronoidea is the sister group of Megalyroidea, which together form the sister group of [Trigonaloidea (Aculeata + Evanioidea)]. Aside from paraphyly of Vespoidea within Aculeata, all currently recognized superfamilies are supported as monophyletic. The diapriid subfamily Ismarinae is raised to family status, Ismaridae stat. nov. © The Will Henning Society 2011.  相似文献   

6.
The phylum Gastrotricha includes about 700 species. They are small worm‐like organisms abundant among marine and freshwater meiobenthos. In spite of their ubiquity, diversity and relative abundance, phylogenetic relationships of these animals remain enigmatic due to the conflicting results of morphological and molecular cladistic analyses. Also unclear are the alliances within the phylum. In order to best estimate the position of Gastrotricha among the Metazoa and to shed some light on the ingroup phylogenetic relationships, small subunit (SSU) ribosomal DNA (rDNA) from 15 species of Chaetonotida (eight genera) and 28 species of Macrodasyida (26 genera) were included in an alignment of 50 metazoan taxa representing 26 phyla. Of the gastrotrich SSU rDNA sequences, eight are new and, along with published sequences represent eight families, including the five marine most speciose. Gastrotricha were resolved within a monophyletic Lophotrochozoa as part of a clade including Micrognathozoa, Rotifera and Cycliophora. The Gnathostomulida were sister to this clade. Nodal support was low for all of these relationships except the grouping of the Micrognathozoa, Rotifera and Cycliophora. Bayesian inference resolved the Gastrotricha as monophyletic with weak nodal support; the Macrodasyida were resolved as paraphyletic with many basal nodes poorly supported. Within the Chaetonotida, the monotypic Multitubulatina Neodasys was found in alliance with the macrodasyidan Urodasys while all the Paucitubulatina were found to form a single, well‐supported clade, with Musellifer as the most basal member. Among the more densely sampled Macrodasyida the Lepidodasyidae and Macrodasyidae were each found to be polyphyletic while monophyly was well supported for the Turbanellidae and Thaumastodermatidae. The congruence of our results with those of the cladistic analysis based on morphological traits provides confidence about the value of each dataset, and calls for widening of the research to include additional taxa of particular phylogenetic significance such as the Dactylopodolidae, Diuronotus, Heteroxenotrichula and Draculiciteria. The study highlights the problems in working with small species, the need for voucher specimens and the confused taxonomic status and membership of various gastrotrich families.  相似文献   

7.
Chaetonotidae is the most diverse and widely distributed family of the order Chaetonotida (Gastrotricha) and includes both marine and freshwater species. Although the family is regarded as a sister taxon to the exclusively marine Xenotrichulidae, the type of environment, marine or freshwater, where Chaetonotidae originated is still not known. Here, we reconstructed the phylogeny of the family based on molecular sequence data and mapped both morphological and ecological characters to determine the ancestral environment of the first members of the family. Our results revealed that the freshwater genus Bifidochaetus is the earliest branching lineage in the paraphyletic Chaetonotidae (encompassing Dasydytidae and Neogosseidae). Moreover, we reconstructed Lepidochaetus-Cephalionotus clade as a monophyletic sister group to the remaining chaetonotids, which supports Kisielewski's morphological based hypothesis concerning undifferentiated type of body scales as a most primary character in Chaetonotidae. We also found that reversals to marine habitats occurred independently in different Chaetonotidae lineages, thus marine species in the genera Heterolepidoderma, Halichaetonotus, Aspidiophorus and subgenera Chaetonotus (Schizochaetonotus) or Chaetonotus (Marinochaetus) should be assumed as having secondarily invaded the marine environment. Character mapping revealed a series of synapomorphies that define the clade that includes Chaetonotidae (with Dasydytidae and Neogosseidae), the most important of which may be those linked to reproduction.  相似文献   

8.
This study presents the first phylogenetic analysis of Dicranophoridae (Rotifera: Monogononta), a species rich rotifer family of about 230 species currently recognized. It is based on a maximum parsimony analysis including 77 selected ingroup and three outgroup taxa and a total of 59 phylogenetically informative morphological characters. Character coding is based on personal investigation of material collected by the authors and an extensive survey of the literature. Apart from covering general body organization, character coding primarily relies on scanning electron microscopic preparations of the mastax jaw elements. Our study suggests monophyly of Dicranophoridae with a clade of Dicranophorus and Dorria as the sister taxon of all other dicranophorid species. Monophyly of Encentrum , the most species rich genus within Dicranophoridae, cannot be demonstrated. Within Dicranophoridae our study identifies the monophyletic taxa Caudosubbasifenestrata, Intramalleata, Praeuncinata and Proventriculata, each based on unambiguous character transformations evolved in their stem lineages. However, resolution within Praeuncinata and Proventriculata is very limited. Although some terminal clades within Praeuncinata and Proventriculata are recognized, basal splits remain obscure. Probably, other characters such as DNA sequence data are needed to further our understanding of phylogenetic relationships within these poorly resolved taxa.  相似文献   

9.
We studied comparatively the muscle organization of several gastrotrich species, aiming at shedding some light on the evolutionary relationships among the taxa of the suborder Paucitubulatina. Under confocal laser scanning microscope, the circular muscles were present in the splanchnic position as incomplete circular rings in Musellifer delamarei (Chaetonotidae) and Xenotrichula intermedia (Xenotrichulidae) and as dorsoventral bands in Xenotrichula punctata, Heteroxenotrichula squamosa and Draculiciteria tesselata (Xenotrichulidae); in the somatic position, M. delamarei shares the presence of dorsoventral muscles with all the Xenotrichulidae, in contrast with the remaining Chaetonotidae that lack these muscles. Maximum parsimony analysis of the muscular characters confirmed monophyly of Paucitubulatina and Xenotrichulidae, while the Chaetonotidae was paraphyletic, with the exclusion of Musellifer , which is the most basal genus within the Paucitubulatina. Xenotrichulidae is the sister taxon to Chaetonotidae, which in turn has Polymerurus as the most basal taxon. In general, the results agree with recent phylogenetic inferences based on molecular characters and support the hypothesis that, within Paucitubulatina, dorsoventral muscles are plesiomorphies retained in marine, interstitial, hermaphroditic gastrotrichs. Dorsoventral muscles were subsequently lost during changes in lifestyle and reproduction modality that took place with the invasion of the freshwater environment. This new information prompted us to reconsider the systematization of Chaetonotidae, proposing the establishment of Muselliferidae fam. nov. to include the genera Musellifer and Diuronotus .  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 379–398.  相似文献   

10.
Kieneke, A. and Hochberg, R. 2012. Ultrastructural observations of the protonephridia of Polymerurus nodicaudus (Gastrotricha: Paucitubulatina). —Acta Zoologica (Stockholm) 93 : 115–124. We studied different regions of the protonephridia of the limnic gastrotrich Polymerurus nodicaudus by means of light and electron microscopy to determine how freshwater species might differ from their marine relatives. Microscopic and ultrastructural characters are in accordance with another limnic species of Paucitubulatina, Chaetonotus maximus, whose protonephridial system has been previously reconstructed. Shared protonephridial characters of both species include the presence of highly elongate terminal organ cilia, microvilli, and the canal cell lumen as well as the presence of a conspicuous anterior loop of the protonephridial lumen. These features are not present in representatives of earlier, marine, paucitubulatan lineages (i.e., Xenotrichulidae) and so are assessed as evolutionary novelties that were likely important for the successful colonization of the freshwater environment.  相似文献   

11.
We present a cladistic analysis of the Anomala based on 66 ingroup species and 5 outgroup representatives. Based on a comparative analysis of the morphology of the foregut we scored 124 characters related to size, shape, and fusion of foregut ossicles and other foregut structures. Our parsimony analysis resulted in 30 equally parsimonious trees which differ mainly at the lower hierarchical level. Our study reveals two large clades within Anomala. One large clade consists of Galatheoidea and Chirostyloidea. The internal relationships show a monophyletic Porcellanidae nested within a group comprising paraphyletic Galatheidae, and Munididae as well as Munidopsidae. The other large clade contains Aegla as sister group to a monophyletic group consisting of the Hippoidea and a clade formed by Lomis and the Paguroidea. Coenobitidae are nested within paraphyletic Diogenidae and Lithodidae are nested within paraphyletic Paguridae. The results are discussed in the context of other morphological and molecular analyses. Furthermore, some aspects of carcinization are touched upon; in particular, an anomalan stem species with a, at least to some extent, ventrally folded pleon is suggested.  相似文献   

12.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

13.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

14.
A phylogenetic analysis of the order Embioptera is presented with a revised classification based on results of the analysis. Eighty‐two species of Embioptera are included from all families except Paedembiidae Ross and Embonychidae Navás. Monophyly of each of the eight remaining currently recognized families is tested except Andesembiidae Ross, for which only a single species was included. Nine outgroup taxa are included from Blattaria, Grylloblattaria, Mantodea, Mantophasmatodea, Orthoptera, Phasmida and Plecoptera. Ninety‐six morphological characters were analysed along with DNA sequence data from the five genes 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase I and histone III. Data were analysed in combined analyses of all data using parsimony and Bayesian optimality criteria, and combined molecular data were analysed using maximum likelihood. Several major conclusions about Embioptera relationships and classification are based on interpretation of these analyses. Of eight families for which monophyly was tested, four were found to be monophyletic under each optimality criterion: Clothodidae Davis, Anisembiidae Davis, Oligotomidae Enderlein and Teratembiidae Krauss. Australembiidae Ross was not recovered as monophyletic in the likelihood analysis in which one Australembia Ross species was recovered in a position distant from other australembiids. This analysis included only molecular data and the topology was not strongly supported. Given this, and because parsimony and the Bayesian analyses recovered a strongly supported clade including all Australembiidae, we regard this family also as monophyletic. Three other families – Notoligotomidae Davis, Archembiidae Ross and Embiidae Burmeister, as historically delimited – were not found to be monophyletic under any optimality criterion. Notoligotomidae is restricted here to include only the genus Notoligotoma Davis with a new family, Ptilocerembiidae Miller and Edgerly, new family, erected to include the genus Ptilocerembia Friederichs. Archembiidae is restricted here to include only the genera Archembia Ross and Calamoclostes Enderlein. The family group name Scelembiidae Ross is resurrected from synonymy with Archembiidae (new status) to include all other genera recently placed in Archembiidae. Embiidae is not demonstrably monophyletic with species currently placed in the family resolved in three separate clades under each optimality criterion. Because taxon sampling is not extensive within this family in this analysis, no changes are made to Embiidae classification. Relationships between families delimited herein are not strongly supported under any optimality criterion with a few exceptions. Either Clothodidae Davis (parsimony) or Australembiidae Ross (Bayesian) is the sister to the remaining Embioptera taxa. The Bayesian analysis includes Australembiidae as the sister to all other Embioptera except Clothididae, suggesting that each of these taxa is a relatively plesiomorphic representatative of the order. Oligotomidae and Teratembiidae are sister groups, and Archembiidae (sensu novum), Ptilocerembiidae, Andesembiidae and Anisembiidae form a monophyletic group under each optimality criterion. Each family is discussed in reference to this analysis, diagnostic combinations and taxon compositions are provided, and a key to families of Embioptera is included.  相似文献   

15.
A phylogeny of the Neotropical members of the Tribe Troidini (Lepidoptera: Papilionidae) was obtained with sequences of three protein-coding genes: two mitochondrial (COI and COII), and one nuclear (EF-1α). Parsimony and Bayesian analyses of 33 taxa resulted in very similar trees regardless of method used with the 27 troidines always forming a monophyletic clade. Within Troidini, the genus Battus is sister group to the remaining troidines, followed by a clade formed by the Paleotropical taxa (here represented by three exemplars). The genus Euryades is the next branch, and sister group of Parides. The genus Parides is monophyletic, and is divided into four main groups by Maximum Parsimony analysis, with the most basal group composed of tailed species restricted to SE Brazil. Character optimization of ecological and morphological traits over the phylogeny proposed for troidines indicated that the use of several species of Aristolochia is ancestral over the use of few or a single host-plant. For the other three characters, the ancestral states were the absence of long tails, forest as the primary habitat and oviposition solitary or in loose group of several eggs.  相似文献   

16.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

17.
A species‐level phylogenetic analysis comprising 37 of the 45 known extant species of archostematan beetles and a total of 110 morphological characters from adults and larvae is presented. For the first time, characters of the male genitalia are included in a phylogenetic analysis of Archostemata. The dataset is analysed with parsimony as well as with Bayesian algorithms. Analyses with differently arranged datasets, with larval characters included or excluded, and including or excluding Micromalthus debilis and Crowsoniella relicta are conducted. The resulting hypothesis of the species‐level phylogeny of Archostemata confirms Cupedidae and Ommatidae as monophyletic taxa. Within Cupedidae, the South American Paracupes and the North American Priacma together are the sister group to all remaining Cupedidae. Among the latter, the identification of a clade comprising Rhipsideigma, Cupes capitatus and Tenomerga leucophaea renders Tenomerga polyphyletic. Ascioplaga scalena comb. nov . is transferred from Adinolepis. Characters of the male genitalia support phylogenetic affinities of Micromalthus debilis with Ommatidae and of Crowsoniella relicta with Cupedidae.  相似文献   

18.
Apple snails (Ampullariidae) are a diverse family of pantropical freshwater snails and an important evolutionary link to the common ancestor of the largest group of living gastropods, the Caenogastropoda. A clear understanding of relationships within the Ampullariidae, and identification of their sister taxon, is therefore important for interpreting gastropod evolution in general. Unfortunately, the overall pattern has been clouded by confused systematics within the family and equivocal results regarding the family's sister group relationships. To clarify the relationships among ampullariid genera and to evaluate the influence of including or excluding possible sister taxa, we used data from five genes, three nuclear and two mitochondrial, from representatives of all nine extant ampullariid genera, and species of Viviparidae, Cyclophoridae, and Campanilidae, to reconstruct the phylogeny of apple snails, and determine their affinities to these possible sister groups. The results obtained indicate that the Old and New World ampullariids are reciprocally monophyletic with probable Gondwanan origins. All four Old World genera, Afropomus, Saulea, Pila, and Lanistes, were recovered as monophyletic, but only Asolene, Felipponea, and Pomella were monophyletic among the five New World genera, with Marisa paraphyletic and Pomacea polyphyletic. Estimates of divergence times among New World taxa suggest that diversification began shortly after the separation of Africa and South America and has probably been influenced by hydrogeological events over the last 90 Myr. The sister group of the Ampullariidae remains unresolved, but analyses omitting certain outgroup taxa suggest the need for dense taxonomic sampling to increase phylogenetic accuracy within the ingroup. The results obtained also indicate that defining the sister group of the Ampullariidae and clarifying relationships among basal caenogastropods will require increased taxon sampling within these four families, and synthesis of both morphological and molecular data. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 61–76.  相似文献   

19.
Cockroaches are an ecologically and economically important insect group, but some fundamental aspects of their evolutionary history remain unresolved. In particular, there are outstanding questions about some of the deeper relationships among cockroach families. As a group transferred from Blaberoidea Saussure to Blattoidea Latreille, the evolutionary history of the family Anaplectidae Walker requires re-evaluation. In our study, we infer the phylogeny of Blattoidea based on the mitochondrial genomes of 28 outgroup taxa and 67 ingroup taxa, including 25 newly sequenced blattoid species mainly from the families Anaplectidae and Blattidae Latreille. Our results indicate that Blattoidea is the sister group of the remaining Blattodea Brunner von Wattenwyl and that Blattoidea can be divided into three main clades: Blattidae + Tryonicidae McKittrick & Mackerras, Lamproblattidae McKittrick + Anaplectidae and Termitoidae Latreille + Cryptocercidae Handlirsch. Our analyses provide robust support for previously uncertain hypotheses. The sister group of Termitoidae + Cryptocercidae (Xylophagodea Engel) is inferred to constitute the rest of Blattoidea, for the first time. Within Blattidae, Hebardina Bey-Bienko is placed as the sister lineage to the rest of Blattidae. The subfamily Archiblattinae is polyphyletic, Blattinae is paraphyletic and Polyzosteriinae is monophyletic (Macrocercinae Roth not included); the genus Periplaneta Burmrister is polyphyletic. Based on the results of our phylogenetic analyses, we have revised these taxa. A new subfamily, Hebardininae subfam.nov. , is proposed in Blattidae. Archiblattinae and Shelfordella Adelung are synonymized with Blattinae and Periplaneta, respectively: Archiblattinae Kirby syn.nov. and Shelfordella Adelung syn.nov. Our inferred divergence times indicate that Blattoidea emerged in the Late Triassic, with six families in Blattoidea diverging in the Middle and Late Jurassic. We suggest that the divergences among lineages of Asian Blattidae and Anaplectidae were driven by the uplift of the Himalayas and deglaciation during the Quaternary, leading to the present-day distributions of these taxa.  相似文献   

20.
Phylogenetic relationships within the Pentatomoidea are investigated through the coding and analysis of character data derived from morphology and DNA sequences. In total, 135 terminal taxa were investigated, representing most of the major family groups; 84 ingroup taxa are coded for 57 characters in a morphological matrix. As many as 3500 bp of DNA data are adduced for each of 52 terminal taxa, including 44 ingroup taxa, comprising the 18S rRNA, 16S rRNA, 28S rRNA, and COI gene regions. Character data are analysed separately and in the form of a total evidence analysis. Major conclusions of the phylogenetic analysis include: the concept of Urostylididae is restricted to that of earlier authors; the Saileriolinae is raised to family rank and treated as the sister group of all Pentatomoidea exclusive of Urostylididae sensu stricto; a broadly conceived Cydnidae, as recognized by Dolling, 1981 , is not supported; the placement of Thaumastellidae within the Pentatomoidea is affirmed and the taxon is recognized at family rank rather than as a subfamily of Cydnidae, although its exact phylogenetic position within the Pentatomoidea remains equivocal; the Parastrachiinae is treated as also including Dismegistus Amyot & Serville and placed within a broadly conceived Corimelaenidae, the latter group being treated at family rank; the family‐group taxa Dinidoridae and Tessaratomidae probably represent a monophyletic group, but the recognition of monophyletic subgroups will benefit from additional representation in the sequence data set; and the Lestoniidae is treated as the sister group of the Acanthosomatidae. The Acanthosomatidae and Scutelleridae are consistently recovered as monophyletic. The monophyly of the Pentatomidae appears unequivocal, inclusive of the Aphylinae and Cyrtocorinae, on the basis of morphology, the latter two taxa not being represented in the molecular data set. © The Willi Hennig Society 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号