首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first report on Agrobacterium rhizogenes-mediated transformation of Withania somnifera for expression of a foreign gene in hairy roots. We transformed leaf and shoot tip explants using binary vector having gusA as a reporter gene and nptII as a selectable marker gene. To improve the transformation efficiency, acetosyringone (AS) was added in three stages, Agrobacterium liquid culture, Agrobacterium infection and co-culture of explants with Agrobacterium. The addition of 75 μM AS to Agrobacterium liquid culture was found to be optimum for induction of vir genes. Moreover, the gusA gene expression in hairy roots was found to be best when the leaves and shoot tips were sonicated for 10 and 20s, respectively. Based on transformation efficiency, the Agrobacterium infection for 60 and 120 min was found to be suitable for leaves and shoot tips, respectively. Amongst the various culture media tested, MS basal medium was found to be best in hairy roots. The transformation efficiency of the improved protocol was recorded 66.5 and 59.5?% in the case of leaf and shoot tip explants, respectively. When compared with other protocols the transformation efficiency of this improved protocol was found to be 2.5 fold higher for leaves and 3.7 fold more for shoot tips. Southern blot analyses confirmed 1–2 copies of the gusA transgene in the lines W1-W4, while 1–4 transgene copies were detected in the line W5 generated by the improved protocol. Thus, we have established a robust and efficient A. rhizogenes mediated expression of transgene (s) in hairy roots of W. somnifera.  相似文献   

2.
Streptomyces and related bacteria produce a wide variety of secondary metabolites. Of these, many compounds have industrial applications, but the question of why this group of microorganism produces such various kinds of biologically active substances has not yet been clearly answered. Here, we overview the results from our studies on the novel function and role of Streptomyces metabolites. The diverged action of negative and positive influences onto the physiology of various microorganisms infers the occurrence of complex microbial interactions due to the effect of small molecules produced by Streptomyces. The interactions may serve as a basis for the constitution of biological community.  相似文献   

3.
4.
Heavy metal contamination represents an important environmental issue due to the toxic effects of metals on different organisms. Filamentous fungi play an important impact in the bioremediation of heavy metal-contaminated wastewater and soil. The purpose of this investigation was to observe fungal uptake behavior toward heavy metal. For this aim Trichoderma asperellum TS141 and T. harzianum TS103 at growth period were screened for their tolerance and uptake capability of cadmium (Cd), lead (Pb) and nickel (Ni) at different concentrations (0, 25, 50, 100, and 200 mg/L) in PDB media (potato dextrose broth as a complex medium). Results showed that both fungi were able to survive at the maximum concentration of 200 mg/L of the heavy metals, and remove them. T. asperellum had a better uptake capacity for Cd compared to Pb and Ni in the highest metal concentration in media. Maximum removal efficiency of Pb (68.4%) at 100 mg/L and Ni (78%) at 200 mg/L was performed by T. asperellum. For Cd, the highest removal efficiency (82.1%) was recorded by T. harzianum at 200 mg/L Cd in aqueous solution. The uptake of Cd was highly dependent on pH of solution than Pb and Ni so that the optimal pH of Cd uptake was 9 for T. asperellum and 4 for T. harzianum. Also, optimal temperature was 35°C for Cd and Pb uptake in both fungi, whereas for Ni uptake was 30 and 35°C in T. harzianum and T. asperellum, respectively. We propose that T. asperellum TS141 and T. harzianum TS103 can be used as a bioremediation agent for metal remediation from wastewater and heavy metal-contaminated soils.  相似文献   

5.
In Withania somnifera, sterol molecules of immense medicinal value are diversified by means of glycosylation. Identifying sterol glycosyltransferases provides an imperative insight of diverse sterol modifications, thereby helping to comprehend the underlying plant mechanisms. In the present study, one of the W. somnifera sterol glycosyltransferase-4 (Ws-Sgtl4) gene was transformed into the W. somnifera leaf explant through Agrobacterium rhizogene. Transformed W. Somnifera Ws-Sgtl4 leaf explants were subjected to hairy root induction and analyzed for biomass accumulation. The analysis of Ws-Sgtl4 gene expression was performed at different time exposures with the application of salicylic acid and methyl jasmonate. The elicitation of W. somnifera hairy root expressing the Ws-Sgtl4 gene was also evaluated for the enhancement if any, in the total withanolide yield as well as the withanolides-A contents. The results suggested that Ws-Sgtl4 gene expression enhanced the production of total withanolide yield and withanolides-A in the hairy root culture of W. somnifera in the response to the elicitors.  相似文献   

6.
7.
Endophytic fungi have been isolated from the healthy turmeric (Curcuma longa L.) rhizomes from South India. Thirty-one endophytes were identified based on morphological and ITS–rDNA sequence analysis. The isolated endophytes were screened for antagonistic activity against Pythium aphanidermatum (Edson) Fitzp., and Rhizoctonia solani Kuhn., causing rhizome rot and leaf blight diseases in turmeric respectively. Results revealed that only six endophytes showed >?70% suppression of test pathogens in antagonistic dual culture assays. The endophyte T. harzianum TharDOB-31 showed significant in vitro mycelial growth inhibition of P. aphanidermatum (76.0%) and R. solani (76.9%) when tested by dual culture method. The SEM studies of interaction zone showed morphological abnormalities like parasitism, shriveling, breakage and lysis of hyphae of the pathogens by endophyte TharDOB-31. Selected endophytic isolates recorded multiple plant growth promoting traits in in vitro studies. The rhizome bacterization followed by soil application of endophyte TharDOB-31 showed lowest Percent Disease Incidence of rhizome rot and leaf blight, 13.8 and 11.6% respectively. The treatment of TharDOB-31 exhibited significant increase in plant height (85 cm) and fresh rhizome yield/plant (425 g) in comparison with untreated control under greenhouse condition. The confocal microscopy validates the colonization of the TharDOB-31 in turmeric rhizomes. The secondary metabolites in ethyl acetate extract of TharDOB-31 were found to contain higher number of antifungal compounds by high resolution liquid chromatograph mass spectrometer analysis. Thereby, endophyte T. harzianum isolate can be exploited as a potential biocontrol agent for suppressing rhizome rot and leaf blight diseases in turmeric.  相似文献   

8.
9.
Present study was aimed to select a suitable Trichoderma isolate as candidate antagonist based on its efficacy in producing cell wall degrading enzymes (CWDEs), its mycoparasitism activity and expression of related genes against the red rot pathogen caused by Colletotrichum falcatum in sugarcane. For which, six different isolates of Trichoderma selected from our earlier studies (T. harzianum, T. asperullum) were evaluated based on their capability in releasing cell wall degrading enzymes individually and during antagonism with C. falcatum in dual plate. Amongst T. harzianum (T20) exhibited the greatest mycoparasitic potential against the C. falcatum, by producing higher concentration of  CWDEs viz., chitinase and β-1, 3-glucanase, slightly lower amounts of cellulase and protease with significant reduction in polygalacturonase produced by pathogen. Further microscopic observation on interaction of C. falcatum with the selected isolate of T. harzianum (T20) exhibited the mycoparasitic activity of antagonist over pathogen in dual culture and inhibition of C. falcatum pathogenesis in detached sugarcane leaves. In addition, expression pattern of eight genes coding various enzymes involved in mycoparasitism by T. harzianum over C. falcatum were analyzed using qRT-PCR in vitro and on sugarcane leaves. In in vitro interactions, five genes of  cell wall degrading enzymes viz., chitinase (chit33), endochitinase (endo42), β-1, 3-glucanase (glu), exochitinase 1 (exc1), exochitinase 2 (exc2), were upregulated during and after contact as compared to before contact, while three genes related with proteases such as alkaline proteinase (prb1), trypsin-like protease (Pra1), subtilin-like serine protease (ssp), genes were upregulated during the contact with C. falcatum and slightly down regulated after contact. In detached leaves, seven genes were potentially upregulated except subtilin-like serine protease, which was down regulated during interaction of C. falcatum and T. harzianum as compared to T. harzianum inoculation alone. All these biochemical and molecular results confirm the efficacy of T. harzianum (T20) against C. falcatum and justify the right selection of candidate antagonist for our further studies on identification of antifungal genes/proteins against C. falcatum in sugarcane.  相似文献   

10.
Economically feasible systems for heterologous production of complex secondary metabolites originating from difficult to cultivate species are in demand since Escherichia coli and Saccharomyces cerevisiae are not always suitable for expression of plant and animal genes. An emerging oilseed crop, Camelina sativa, has recently been engineered to produce novel oil profiles, jet fuel precursors, and small molecules of industrial interest. To establish C. sativa as a system for the production of medicinally relevant compounds, we introduced four genes from Veratrum californicum involved in steroid alkaloid biosynthesis. Together, these four genes produce verazine, the hypothesized precursor to cyclopamine, a medicinally relevant steroid alkaloid whose analogs are currently being tested for cancer therapy in clinical trials. The future supply of this potential cancer treatment is uncertain as V. californicum is slow-growing and not amendable to cultivation. Moreover, the complex stereochemistry of cyclopamine results in low-yield syntheses. Herein, we successfully engineered C. sativa to synthesize verazine, as well as other V. californicum secondary metabolites, in seed. In addition, we have clarified the stereochemistry of verazine and related V. californicum metabolites.  相似文献   

11.
One of the most significant control mechanisms of the physiological processes in the genus Streptomyces is carbon catabolite repression (CCR). This mechanism controls the expression of genes involved in the uptake and utilization of alternative carbon sources in Streptomyces and is mostly independent of the phosphoenolpyruvate phosphotransferase system (PTS). CCR also affects morphological differentiation and the synthesis of secondary metabolites, although not all secondary metabolite genes are equally sensitive to the control by the carbon source. Even when the outcome effect of CCR in bacteria is the same, their essential mechanisms can be rather different. Although usually, glucose elicits this phenomenon, other rapidly metabolized carbon sources can also cause CCR. Multiple efforts have been put through to the understanding of the mechanism of CCR in this genus. However, a reasonable mechanism to explain the nature of this process in Streptomyces does not yet exist. Several examples of primary and secondary metabolites subject to CCR will be examined in this review. Additionally, recent advances in the metabolites and protein factors involved in the Streptomyces CCR, as well as their mechanisms will be described and discussed in this review.  相似文献   

12.

Background

Marine actinomycetes are efficient producers of new secondary metabolites that show different biological activities, including antibacterial, antifungal, anticancer, insecticidal, and enzyme inhibition activities.

Methods

The morphological, physiological, and biochemical properties of the strain Streptomyces sp. VITPSA were confirmed by conventional methods. Antibacterial, anti-oxidant, anti-inflammatory, anti-diabetic, and cytotoxic activities of Streptomyces sp. VITPSA extract were determined. The media were optimized for the production of secondary metabolites. Characterization and identification of secondary metabolites were conducted by high-performance liquid chromatography, gas chromatography-mass spectroscopy, and Fourier transform infrared spectroscopy analysis.

Results

The strain showed significant antibacterial, anti-oxidant, and cytotoxic activities, moderate anti-inflammatory activity, and no satisfactory anti-diabetic activity. The ethyl acetate extract of Streptomyces sp. VITPSA showed maximum antibacterial activity against two gram-positive and gram-negative bacteria at 0.5 mg/mL. The antioxidant potential of the crude extract exhibited strong reducing power activity at 0.5 mg/mL with 95.1% inhibition. The cytotoxic effect was found to be an IC50 of 50 μg/mL on MCF-7 cell lines. Experimental design of optimization by one-factor analysis revealed the most favorable sucrose, yeast extract, pH (7.25), and temperature (28°C) conditions for the effective production of secondary metabolites.

Conclusion

This study revealed that Streptomyces sp. VITPSA is an excellent source of secondary metabolites with various bioactivities.
  相似文献   

13.
Phytophthora drechsleri damping-off is one of the most important diseases of cucumber (Cucumis sativus). Salinity is a serious problem for crop production and affects diversity and activity of soil microorganisms. Application of salt-tolerant biocontrol agents may be beneficial in order to protect plants against pathogenic fungi in saline soils. In this study, a total of 717 Streptomyces isolates were isolated from the rhizosphere of cucumber, out of which two isolates showed more than 70% inhibitory effect against P. drechsleri and had cellulase activity in the presence and absence of NaCl. In a greenhouse experiment, two Streptomyces isolates with the highest antagonistic activity, strains C 201 and C 801, reduced seedling damping-off of cucumber caused by P. drechsleri by 77 and 80%, respectively, in artificially infested soils. Strain C 201 increased dry weight of seedlings up to 21% in greenhouse experiments. Phylogenetic analyses of 16S rRNA gene sequence reveals that strains C 201 and C 801 are closely related to S. rimosus and S. monomycini respectively. Increased activity of polyphenol oxidase (PPO) and peroxidase (POX) enzymes in Streptomyces-treated plants proved the biocontrol-induced systemic resistance (ISR) in cucumber plants against P. drechsleri.  相似文献   

14.
Withania somnifera one of the most reputed Indian medicinal plant has been extensively used in traditional and modern medicines as active constituents. A high frequency genotype and chemotype independent Agrobacterium-mediated transformation protocol has been developed for W. somnifera by optimizing several factors which influence T-DNA delivery. Leaf and node explants of Withania chemotype was transformed with A. tumefaciens strain GV3101 harboring pIG121Hm plasmid containing the gusA gene encoding β-glucuronidase (GUS) as a reporter gene and the hptII and the nptII gene as selection markers. Various factors affecting transformation efficiency were optimized; as 2 days preconditioning of explants on MS basal supplemented with TDZ 1 μM, Agrobacterium density at OD600 0.4 with inclusion of 100 μM acetosyringone (As) for 20 min co-inoculation duration with 48 h of co-cultivation period at 22 °C using node explants was found optimal to improved the number of GUS foci per responding explant from 36?±?13.2 to 277.6?±?22.0, as determined by histochemical GUS assay. The PCR and Southern blot results showed the genomic integration of transgene in Withania genome. On average basis 11 T0 transgenic plants were generated from 100 co-cultivated node explants, representing 10.6 % transformation frequency. Our results demonstrate high frequency, efficient and rapid transformation system for further genetic manipulation in Withania for producing engineered transgenic Withania shoots within very short duration of 3 months.  相似文献   

15.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

16.
Trichoderma species form endophytic associations with plant roots and may provide a range of benefits to their hosts. However, few studies have systematically examined the diversity of Trichoderma species associated with plant roots in tropical regions. During the evaluation of Trichoderma isolates for use as biocontrol agents, root samples were collected from more than 58 genera in 35 plant families from a range of habitats in Malaysian Borneo. Trichoderma species were isolated from surface-sterilised roots and identified following analysis of partial translation elongation factor-1α (tef1) sequences. Species present included Trichoderma afroharzianum, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma guizhouense, Trichoderma reesei, Trichoderma strigosum and Trichoderma virens. Trichoderma asperellum/T. asperelloides, Trichoderma harzianum s.l. and T. virens were the most frequently isolated taxa. tef1 sequence data supported the recognition of undescribed species related to the T. harzianum complex. The results suggest that tropical plants may be a useful source of novel root-associated Trichoderma for biotechnological applications.  相似文献   

17.
Scoparia dulcis of Scrophulariaceae is an annual herb distributed through out the tropics. Penicillium citrinum was obtained from apparently healthy roots, stem, leaves and fruits of this plant. Callus and multiple shoots produced during micropropagation from various explants were also symptomless but showed occurrence of Penicillium citrinum when cultured in Murashige & Skoog liquid medium for the production of secondary metabolites.  相似文献   

18.
Streptomyces is a genus known for its ability to protect plants against many pathogens and various strains of this bacteria have been used as biological control agents. In this study, the efficacy of Streptomyces philanthi RM-1-138, S. philanthi RL-1-178, and Streptomyce mycarofaciens SS-2-243 to control various strains of Botrytis cinerea was evaluated both in vitro and in vivo. In vitro studies using confrontation tests on PDA plates indicated that the three strains of Streptomyces spp. inhibited the growth of 41 strains of B. cinerea. Volatile compounds produced by Streptomyces spp. had an influence on the growth of ten strains of B. cinerea while its culture filtrate at low concentration (diluted at 10?3) showed a complete inhibition (100%) of spore germination of B. cinerea strain BC1. A significant protection efficacy of tomato against B. cinerea was observed on both whole plant test (57.4%) and detached leaf test (60.1%) with S. philanti RM-1-138. Moreover, this antagonistic strain had a preventive and a curative effect. These results indicated that S. philanthi RM-1-138 may have the potential to control gray mold caused by B. cinerea on tomato but further work is required to enhance its efficacy and its survival in planta.  相似文献   

19.
20.
Ameliorative effects of Trichoderma harzianum (Th-6) on monocot crops under saline environment using hydroponic system were examined. Both rice and maize seeds were coated with T. harzianum (Th-6) and used for the saline and non-saline treatment. Germination and seedling growth performance were studied. T. harzianum (Th-6)-treated seeds showed constantly faster and more uniform germination as compared to untreated seeds. Moreover, seeds treated with Trichoderma improved plants’ growth and physiological performance under hydroponic saline environment compared to control. The treatments showed higher relative water content (RWC), dark-adapted quantum yield (F v/F m ratio), performance index (PIABS), photochemical quenching (q P), stomatal conductance (g s), pigments concentrations and antioxidant enzymes as compared to untreated saline environment. Application of endophyte inhibited the Na+ and Cl? ion uptake in leaves when plants were exposed to saline environment. However, H2O2 contents of both treated crops declined under hydroponic salt stress environment. Physiological mechanism of T. harzianum (Th-6) application in mitigating the salt-related consequences of both monocot crops was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号