首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary The rad6-1 and rad6-3 mutants are highly UV sensitive and show an increase in spontaneous and UV induced mitotic heteroallelic recombination in diploids. Both rad6 mutants are proficient in spontaneous and UV induced unequal sister chromatid recombination in the reiterated ribosomal DNA sequence and are deficient in UV induced mutagenesis. In contrast to the above effects where both mutants appear similar, rad6-1 mutants are deficient in sporulation and meiotic recombination whereas rad6-3 mutants are proficient. The differential effects of these mutations indicate that the RAD6 gene is multifunctional. The possible role of the RAD6 gene in error prone excision repair of UV damage during the G1 phase of the cell cycle in addition to its role in postreplication repair is discussed.  相似文献   

2.
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.  相似文献   

3.
Louise Prakash 《Genetics》1974,78(4):1101-1118
Two genes, rad6 and rad9, that confer radiation sensitivity in the yeast Saccharomyces cerevisiae also greatly reduce the frequency of chemically-induced reversions of a tester mutant cyc1-131, which is a chain initiation mutant in the structural gene determining iso-1-cytochrome c. Mutations induced by ethyl methanesulfonate (EMS), diethyl sulfate (DES), methyl methanesulfonate (MMS), dimethyl sulfate (DMS), nitroquinoline oxide (NQO), nitrosoguanidine (NTG), nitrogen mustard (HN2), beta-propiolactone, and tritiated uridine, as well as mutations induced by ultraviolet light (UV) and ionizing radiation were greatly diminished in strains homozygous for either the rad6 or rad9 gene. Nitrous acid and nitrosoimidazolidone (NIL), on the other hand, were highly mutagenic in these repair-deficient mutants, and at low doses, these mutagens acted with about the same efficiency as in the normal RAD strain. At high doses of either nitrous acid or NIL, however, reversion frequencies were significantly reduced in the two rad mutants compared to normal strains. Although both rad mutants are immutable to about the same extent, the rad9 strains tend to be less sensitive to the lethal effect of chemical mutagens than rad6 strains. It is concluded that yeast requires a functional repair system for mutation induction by chemical agents.  相似文献   

4.
Summary In Saccharomyces cerevisiae, a protein was recognized by polyclonal antibodies raised against homogeneous Escherichia coli K12 RecA protein. The cellular level of the yeast protein called RecAsc (molecular weight 44 kDa, pI 6.3), was transiently enhanced after UV irradiation. Protease inhibitors were required to minimize degradation of the RecAsc protein during cell lysis. The RecAsc protein exhibited similar basal levels and similar kinetics of increase after UV irradiation in DNA-repair proficient (RAD +) strains carrying mitochondrial DNA or not (rho 0). This was also true for the following DNA-repair deficient (rad -) strains: rad2-6 rad6-1 rad52-1, a triple mutant blocked in three major repair pathways; rad6-, a mutant containing an integrative deletion in a gene playing a central role in mutagenesis; pso2-1, a mutant that exhibits a reduced rate of mutagenesis and recombination after exposure to DNA cross-linking agents.  相似文献   

5.
The biological significance of DNA damage-induced gene expression in conferring resistance to DNA-damaging agents is unclear. We investigated the role of DUN1-mediated, DNA damage-inducible gene expression in conferring radiation resistance in Saccharomyces cerevisiae. The DUN1 gene was assigned to the RAD3 epistasis group by quantitating the radiation sensitivities of dun1, rad52, rad1, rad9, rad18 single and double mutants, and of the dun1 rad9 rad52 triple mutant. The dun1 and rad52 single mutants were similar in terms of UV sensitivities; however, the dun1 rad52 double mutant exhibited a synergistic decrease in UV resistance. Both spontaneous intrachromosomal and heteroallelic gene conversion events between two ade2 alleles were enhanced in dun1 mutants, compared to DUN1 strains, and elevated recombination was dependent on RAD52 but not RAD1 gene function. Spontaneous sister chromatid exchange (SCE), as monitored between truncated his3 fragments, was not enhanced in dun1 mutants, but UV-induced SCE and heteroallelic recombination were enhanced. Ionizing radiation and methyl methanesulfonate (MMS)-induced DNA damage did not exhibit greater recombinogenicity in the dun1 mutant compared to the DUN1 strain. We suggest that one function of DUN1-mediated DNA damage-induced gene expression is to channel the repair of UV damage into a nonrecombinogenic repair pathway.  相似文献   

6.
The frequency of revertants induced by 60Co gamma rays of the ochre allele, cyc1-9, has been measured in radiation-sensitive strains carrying one of 19 nonallelic mutations and in wild-type strains. The results indicate that ionizing radiation mutagenesis depends on the activity of the RAD6 group of genes and that the gene functions employed are very similar, but probably not identical, to those that mediate UV mutagenesis. Repair activities dependent on the functions of the RAD50 through RAD57 loci, the major pathway for the repair of damage caused by ionizing radiation, do not appear to play any part in mutagenesis. A comparison between the gamma-ray data and those obtained previously with UV (LAWRENCE and CHRISTENSEN 1976) and chemical mutagens (PRAKASH 1976) suggests that the RAD6 "mutagenic pathway" is in fact composed of a set of processes, some of which are concerned with error-prone, and some with error-free, recovery activities.  相似文献   

7.
Summary Mutations in the RAD3 gene of Saccharomyces cerevisiae were generated by integration of a mutagenized incomplete copy of the cloned gene into wild-type cells. Integrants were mass screened for colonies with abnormal growth characteristics at 37°C. A single temperature-sensitive mutant (rad3ts-1) was isolated and was shown to result from a missense mutation at codon 73 of the RAD3 gene. When shifted from 30° C to 37° C the strain undergoes only 2–4 cell doublings. This phenotype can be rescued by plasmids in which the essential function of the cloned RAD3 gene is intact, but not plasmids in which this function is inactivated. The mutant strain is weakly sensitive to ultraviolet (UV) radiation at restrictive temperatures. Measurement of RNA, DNA and protein synthesis at various times after shifting to restrictive temperatures does not show preferential inactivation of any one of these parameters and the temperature-sensitive mutation does not cause arrest at any specific phase of the cell cycle. The rad3ts-1 strain was transformed with multicopy plasmids from a normal yeast genomic library and two plasmids that partially suppress the temperature-sensitive phenotype were isolated. These suppressor genes (designated SRE1 and SRE2) are distinct from RAD3 and do not suppress the phenotype of several other temperature-sensitive mutants tested. Mutant strains carrying disruptions of the SRE1 gene are viable and are not sensitive to UV or radiation.  相似文献   

8.
9.
The RAD4 gene of Saccharomyces cerevisiae is required for the incision of damaged DNA during nucleotide excision repair. When plasmids containing the wild-type gene were transformed into various Escherichia coli strains, transformation frequencies were drastically reduced. Most plasmids recovered from transformants showed deletions or rearrangements. A minority of plasmids recovered from E. coli HB101 showed no evidence of deletion or rearrangement, but when they were transformed into S. cerevisiae on centromeric vectors, little or no complementation of the UV sensitivity of rad4 mutants was observed. Deliberate insertional mutagenesis of the wild-type RAD4 allele before transformation of E. coli restored transformation to normal levels. Plasmids recovered from these transformants contained an inactive rad4 allele; however, removal of the inserted DNA fragment restored normal RAD4 function. These experiments suggest that expression of the RAD4 gene is lethal to E. coli and show that lethality can be prevented by inactivation of the gene before transformation. Stationary-phase cultures of some strains of E. coli transformed with plasmids containing an inactivated RAD4 gene showed a pronounced delay in the resumption of exponential growth, suggesting that the mutant (and, by inference, possibly wild-type) Rad4 protein interferes with normal growth control in E. coli. The rad4-2, rad4-3, and rad4-4 chromosomal alleles were leaky relative to a rad4 disruption mutant. In addition, overexpression of plasmid-borne mutant rad4 alleles resulted in partial complementation of rad4 strains. These observations suggest that the Rad4 protein is relatively insensitive to mutational inactivation.  相似文献   

10.
The influence of rad2 mutation blocking incision of pyrimidine dimers on frequency of UV-light and 6-hydroxylaminopurine (6-GAP)-induced adenine-independent revertants was studied in the strains of Saccharomyces cerevisiae containing the same mutant allele of gene ADE2 in episomic plasmid and in chromosome. It was shown that the strains carrying the ade2 mutation in chromosome and in plasmid did not differ in sensitivity to lethal action of UV-light and 6-GAP. However, in the plasmid rad2 strain reversions were induced by UV-light more frequently (approximately 100 times), as compared to the chromosome strain. We observed no significant differences between reversion frequencies in plasmid and chromosome RAD strains. The tendency to enhanced 6-GAP-induced mutagenesis, less sharply expressed, was observed in the chromosome rad2 strain, as compared to the plasmid one. However, the plasmid RAD strain was characteristic of higher reversion frequency induced by 6-GAP, as compared to the chromosome strain. The possible mechanisms of these phenomena are discussed.  相似文献   

11.
R. H. Schiestl  S. Prakash    L. Prakash 《Genetics》1990,124(4):817-831
rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.  相似文献   

12.
J. P. McDonald  A. S. Levine    R. Woodgate 《Genetics》1997,147(4):1557-1568
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1 genes, in UV resistance and UV-induced mutagenesis. Similar to its prokaryotic homologues, RAD30 was found to be damage inducible. Like many S. cerevisiae genes involved in error-prone DNA repair, epistasis analysis clearly places RAD30 in the RAD6 group and rad30 mutants display moderate UV sensitivity reminiscent of rev mutants. However, unlike rev mutants, no defect in UV-induced reversion was seen in rad30 strains. While rad6 and rad18 are both epistatic to rad30, no epistasis was observed with rev1, rev3, rev7 or rad5, all of which are members of the RAD6 epistasis group. These findings suggest that RAD30 participates in a novel error-free repair pathway dependent on RAD6 and RAD18, but independent of REV1, REV3, REV7 and RAD5.  相似文献   

13.
Summary The mutant cdc7-1 is shown here to block UV induced reversion of six different auxotrophic mutations and forward mutations at several genes concerned with adenine biosynthesis in Saccharomyces cerevisiae. Chemical mutagenesis is also drastically reduced. In its effect on mutagenesis cdc7-1 resembles rad6-1. However, in contrast to rad6-1, cdc7-1 does not affect sporulation or mitotic recombination neither is it sensitive to the antifolate drug trimethoprim. It appears to fall in the same epistatic group as rad6-1. Possible explanations for its action are briefly considered.  相似文献   

14.
Excision of interstrand DNA cross-links induced by 4,5',8-trimethyl psoralen plus 360-nm light was examined in wild type (RAD+) and various radiation-sensitive (rad) mutants of Saccharomyces cerevisiae known to be defective in the excision of UV light-induced pyrimidine dimers. Alkaline sucrose sedimentation of DNA after incubation of psoralen-plus-light-treated cells indicated little or no nicking of cross-linked DNA in rad1-2, rad2-5, rad3-2, rad4-4, rad10-2, and mms19-1 mutants. In the rad14-2 mutant, substantial nicking was observed but to a much lesser extent than in the RAD+ strains, whereas the rad16-1 mutant was as proficient in nicking as the RAD+ strain. Removal of cross-links was also examined in RAD+, rad3-2, and rad14-2 strains by determining the sensitivity of alkali-denatured and -neutralized DNA to hydrolysis by S1 nuclease. No cross-link removal was observed in the rad3-2 mutants, and the rad14-2 mutant was much less efficient than the RAD+ strain in removing cross-links.  相似文献   

15.
The effect of UV irradiation on the survival, inter- and intragenic mitotic recombination of 3 diploid UV sensitive Saccharomyces mutants was studied and compared with the wild type RAD. These strains, homozygous for either the RAD, r1s rad 9-4, or rad 2-20 gene, have DRF values for survival of 1:1.6:3:20.6 respectively, at LD1. Their recombination behaviour is not correlated to their survival characteristics. The RAD, r1s, and rad 2-20 strains showed UV induced mitotic inter- and intragenic recombinants; the induction in the r1s diploid is ca. 100 times greater for both the inter- and intragenic recombinants than in the RAD strain. The rad 9-4 diploid produced no UV induced mitotic recombinants whatsoever, and is therefore considered to be a rec- mutation.  相似文献   

16.
The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses UV-induced mutagenesis. However, this mutation significantly increases the frequency of spontaneous canavanine-resistance mutations induced by disturbances in correcting errors of DNA replication and repair, which distinguishes it from all identified alleles of gene MEC1.  相似文献   

17.
The response of two mutant alleles of the RAD6+ gene of Saccharomyces cerevisiae to the ochre translational suppressor SUQ5 was determined. Both the ultraviolet sensitivity phenotype and the deficiency in ultraviolet-induced mutagenesis phenotype of the rad6-1 allele were suppressed in a [psi+] background. For the rad6-3 allele, only the ultraviolet-sensitivity phenotype was suppressible in a [psi+] background. An SUQ5 rad6-3 [psi+] strain that was examined showed the normal rad6-3 deficiency in ultraviolet-induced mutagenesis. We propose that the RAD6+ gene is divided into two cistrons, RAD6A and RAD6B. RAD6A codes for an activity responsible for the error-prone repair of ultraviolet-induced lesions in deoxyribonucleic acid but is not involved in a cell's resistance to the lethal effects of ultraviolet light. RAD6B codes for an activity essential for error-free repair of potentially lethal mutagenic damage.  相似文献   

18.
Summary The repair of interstrand cross-links induced by 8-methoxypsoralen plus UVA (365 nm) radiation DNA was analyzed in diploid strains of the yeast Saccharomyces cerevisiae. The strains employed were the wild-type D7 and derivatives homozygous for the rad18-1 or the rad3-12 mutation. Alkaline step-elution and electron microscopy were performed to follow the process of induction and removal of photoinduced crosslinks. In accordance with previous reports, the D7 rad3-12 strain failed to remove the induced lesions and could not incise cross-links. The strain D7 rad18-1 was nearly as efficient in the removal of 8-MOP photoadducts after 2 h of post-treatment incubation as the D7 RAD+ wild-type strain. However, as demonstrated by alkaline step-elution and electron microscopic analysis, the first incision step at DNA cross-links was three times more effective in D7 rad18-1 than in D7 RAD+. This is consistent with the hypothesis that the RAD18 gene product is involved in the filling of gaps resulting from persistent non-informational DNA lesions generated by the endonucleolytic processing of DNA cross-links. Absence of this gene product may lead to extensive strand breakage and decreased recognition of such lesions by structural repair systems.  相似文献   

19.
Summary The Escherichia coli recA protein coding region was ligated into an extrachromosomally replicating yeast expression vector downstream of the yeast alcohol dehydrogenase promoter region to produce plasmid pADHrecA. Transformation of the wild-type yeast strains YNN-27 and 7799-4B, as well as the recombination-deficient rad52-t C5-6 mutant, with this shuttle plasmid resulted in the expression of the bacterial 38 kDa RecA protein in exponential phase cells. The wild-type YNN27 and 7799-4B transformants expressing the bacterial recA gene showed increased resistance to the toxic effects of both ionizing and ultraviolet radiation. RecA moderately stimulated the UV-induced mutagenic response of 7799-4B cells. Transformation of the rad52-t mutant with plasmid pADHrecA did not result in the complementation of sensitivity to ionizing radiation. Thus, the RecA protein endows the yeast cells with additional activities, which were shown to be error-prone and dependent on the RAD52 gene.  相似文献   

20.
In eukaryotes, damage tolerance of matrix DNA is mainly determined by the repair pathway under the control of the RAD6 epistatic group of genes. This pathway is also a main source of mutations generated by mutagenic factors. The results of our recent studies show that gene HSM3 participating in the control of adaptive mutagenesis increases the frequency of mutations induced by different mutagens. Mutations rad18, rev3, and mms2 controlling various stages of the RAD6 pathway are epistatic with mutation hsm3 that decreases UV-induced mutagenesis to the level typical for single radiation-sensitive mutants. The level of mutagenesis in the double mutant srs2 hsm3 was lower than in both single mutants. Note that a decrease in the level of mutagenesis relative to the single mutant srs2 depends on the mismatch repair, since this level in the triple mutant srs2 hsm3 pms1 corresponds to that in the single mutant srs2. These data show that the mutator phenotype hsm3 is probably determined by processes occurring in a D loop. In a number of current works, the protein Hsm3 was shown to participate in the assembly of the proteasome complex S26. The assembly of proteasomes is governed by the N-terminal domain. Our results demonstrated that the Hsm3 protein contains at least two domains; the N-terminal part of the domain is responsible for the proteasome assembly, whereas the C-terminal portion of the protein is responsible for mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号