首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Four strains with high phenanthrene-degrading ability were isolated from petroleum badly polluted soil. The strainPseudomonas sp. ZJF08 demonstrated the highest rate of degradation (138. 1 mg·L?1·day?1) among them and degraded 97.1% of the phenanthrene in one week. The activities of two key enzymes of ZJF08, polycyclic aromatic hydrocarbon dioxygenase and catechol-2,3-oxygenase (C23O), were also assayed during the degradation of phenanthrene. Both of them reached their maximums on the 2nd day of degradation. The C23O gene (C7) ofPseudomonas sp. ZJF08 was cloned and expressed inEscherichia coli, and its gene product was purified by a Ni-NTA-agarose column. The optimum temperature for the purified C23O was 40°C at pH 7.5 and the C23O activity could be still detected when the temperature reached 70°C. The results showed that the C23O fromPseudomonas sp. strain ZJF08 exhibited better thermostability than its homologs reported.  相似文献   

3.
Filtration was studied in two Arctic clams, Hiatella arctica and Mya sp., collected in Young Sound, Northeast Greenland. Clearance rates were determined as a function of ambient temperature and algal cell concentration, using the clearance method and feeding with a unicellular flagellate. For both species, clearance rates increased with increasing temperature from <у up to 4-8°C. At higher temperatures, filtration ceased and the clams closed their valves. Clearance rates were also determined in temperate specimens of H. arctica collected on the west coast of Sweden. For these specimens, clearance rates increased with increasing temperature from 0 to 18-20°C. When weight-specific clearance rates were compared between the two populations and between species, there were no differences at 1°C. Clearance rates in Arctic H. arctica were maximal at algal cell concentrations corresponding to 2.5-8 µg chlorophyll a l-1. Temperature compensation in Arctic bivalves is discussed and it is concluded that adaptations to constant low temperatures consist of a lower minimum temperature, for active filtration. Low clearance rates due to low temperatures did not seem to limit growth, under the prevailing conditions in Young Sound.  相似文献   

4.
The effect of the acclimation temperature on the temperature tolerance ofPorphyra leucosticta, and on the temperature requirements for growth and survival ofEnteromorpha linza was determined under laboratory conditions. Thalli ofP. leucosticta (blade or Conchocelis phases), acclimated to twenty-five degrees, survived up to 30°C, i.e. 2°C more than those acclimated to 15°C which survived up to 28°C. Lower temperature tolerance of bothPorphyra phases that were acclimated to 15°C was −1°C after an 8-week exposure time at the experimental temperatures. The upper temperature tolerance ofE. linza also increased by 2°C, i.e. from 31 to 33°C, when it was acclimated to 30°C instead of 15°C. The lower temperature tolerance increased from 1 to −1°C, when it was acclimated to 5°C instead of 15°C.E. linza thalli acclimated for 4 weeks to 5 or 10°C reached their maximum growth at 15°C, i.e. at a 5°C lower temperature than those acclimated to 15 or 30°C. These thalli achieved higher growth rates in percent of maximal growth at low temperatures than those acclimated to 15 or 30°C. Thalli acclimated for 1 week to 5°C reached their maximum growth rate at 20°C and achieved growth rates at low temperatures similar to those recorded for thalli acclimated to 15°C. Thalli ofE. linza acclimated for 4 weeks to 5°C lost this acclimation after being post-cultivated for the same period at 15°C. That was not the case with thalli acclimated for 8 weeks to 5°C and post-acclimated for 4 weeks to 15°C. These thalli displayed similar growth patterns at 10–25°C, while a decline of growth rate was observed at 5 or 30°C. The significance of the acclimation potential ofE. linza with regard to its seasonality in the Gulf of Thessaloniki, and its distribution in the N Atlantic, is also discussed.  相似文献   

5.
C4 plants are uncommon in cold environments and do not generally occur in the alpine tundra. In the White Mountains of California, however, the C4 grass Muhlenbergia richardsonis is common in the alpine zone at 3,300-3,800 m, with the highest population observed at 3,960 m (13,000 feet) above sea level. This is the highest reported C4 species in North America and is near the world altitude limit for C4 plants (4,000-4,500 m). Above 3,800 m, M. richardsonis is largely restricted to southern slope aspects, with greatest frequency on southeast-facing slopes. In open tundra, M. richardsonis formed prostrate mats with a mean height of 2.5 cm. Neighboring C3 grasses were two to three times taller. Because of its short stature, leaf temperature of M. richardsonis was greatly influenced by the boundary layer of the ground, rising over 20°C above air temperature in full sun and still air and over 10°C above air temperature in full sun and wind velocity of 1-4 m s-1. Thus, although air temperatures did not exceed 15°C, midday leaf temperatures of M. richardsonis were routinely between 25°C and 35°C, a range favorable to C4 photosynthesis. At night, leaf temperature of M. richardsonis was often 5-12°C below air temperature, resulting in regular exposure to subzero temperatures and frosting of the leaves. No visible injury was associated with exposure to freezing night temperatures. The presence of M. richardsonis in the alpine zone demonstrates that C4 plants can tolerate extreme cold during the growing season. The localization to microsites where leaf temperatures can exceed 25°C during the day, however, indicates that even when cold tolerant, C4 plants still require periods of high leaf temperature to remain competitive with C3 species. In this regard, the prostrate growth form of M. richardsonis compensates for the alpine climate by allowing sufficient heating of the leaf canopy during the day.  相似文献   

6.
Two specimens of Campylonotus arntzianus sp. nov. were caught in the Antarctic Scotia Sea off Saunders Island (57°40.31'S, 26°27.81'W) using an Agassiz trawl at one station (depth: 475-589 m). The new species described here is the fifth representative of the monogeneric family Campylonotidae, and the first of the family south of the Antarctic Convergence. Campylonotus arntzianus sp. nov. is a shrimp of about 5 cm in total length. Due to similarities in adult morphology, C. arntzianus sp. nov. seems to be closely related to C. capensis, a deep-sea species from the Southern Atlantic Ocean. A simple key for the species identification of the Campylonotidae is provided.  相似文献   

7.
Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of themeta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, andmeta-cleavage of protocatechuate. ThepcbC gene responsible for themeta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that ofPseudomonas sp. CBS3, yet only a 50% homology with that ofArthrobacter spp. However, thefcb genes for the hydrolytic dechlorination of 4CBA inPseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBP completely viameta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.  相似文献   

8.
Bactrocera latifrons (Hendel) is believed to have originated in Southeast Asia but has invaded Hawaii and most recently East Africa. This insect has also been recorded on Okinawa Island, the far south of Kyushu Island, Japan. To assess the overwintering ability of B. latifrons adults, survival at constant temperatures (8, 10, 12, 14, 15 °C) and under fluctuating thermal regimes (FTRs) was investigated. At 14 or 15 °C, more than 30 % of females survived for 90 days. Time required to kill 95 % of B. latifrons at 8 °C was estimated to be 13 days; at 10 °C, 29 days; and at 12 °C, 38 days for females, and 8, 17, and 24 days at the same above temperatures, respectively, for males, suggesting low cold tolerance of this species. The results show that females survive cold temperatures better than males. Under an FTR of 11 °C (22 h)/20 °C (2 h) (average 11.8 °C) survival of females drastically increased compared to that at a constant temperature of 12 °C, whereas the survival of males increased slightly. Survival under FTRs indicates that adult B. latifrons may not overwinter in the north of Tanegashima Island, located 30 km south of Kyushu Island, Japan.  相似文献   

9.
During Antarctic summer, total lipids (g/100 g dry matter) in Notothenia coriiceps (n=18) and Lepidonotothen nudifrons (n=10) were low (6.1 and 4.7 in muscle), which is typical of Antarctic benthic species. The liver of female N. coriiceps was heavier and contained more lipids per dry weight than the liver of males. The fatty acid composition of N. coriiceps and L. nudifrons was dominated by polyunsaturated fatty acids (PUFA, respectively, 44 and 49% of total fatty acids in muscle, 31 and 46% in liver), which included primarily C20:5n-3 (18 and 19% in muscle, 13 and 18% in liver) and C22:6n-3 (15 and 19% in muscle, 12 and 20% in liver). In L. nudifrons, the levels of some unsaturated fatty acids increased with age and size. The high percent unsaturation (PUFA+MUFA, 78 and 80% in muscle, 82 and 80% in liver) is a response to low water temperature (-0.4°C). Fish fatty acid profiles reflect fatty acid profiles of the diet (amphipods, macroalgae and fish).  相似文献   

10.
The ability of three psychrotrophic Gram-negative bacilli isolated from Chilean Patagonian cold freshwater rivers to produce bioactive metabolites was evaluated. The strains were isolated from cold waters rivers and identified by their biochemical properties and 16S rRNA gene analysis. The metabolites fractions showing antibacterial activity were obtained by solvent extraction and partially characterized by gas–mass chromatography (GC-MS). Antibacterial activity of the fractions was evaluated by an agar-well diffusion test upon 14 bacterial strains, both Gram positive and Gram negative. Thermal and proteolytic resistances of the antibacterial metabolites fractions were also evaluated. Molecular analysis allows the identification of the three Patagonian strains as Pseudomonas sp. RG-6 (Pseudomonas brenneri 99.6 % identity), Pseudomonas sp. RG-8 (Pseudomonas trivialis 99.6 % identity) and Yersinia sp. RP-3 (Yersinia aldovae 99.5 % identity). These extracts were able to inhibit both Gram-positive and Gram-negative bacteria but not Listeria monocytogenes. The antibacterial activity of the filtrated supernatants was lost at temperatures ≥60 °C, and was not affected by proteinase K treatment. The chemical structure of the active molecule remains to be elucidated, although the GC-MS analysis of the filtrates suggests that compounds like sesquiterpenes derivatives from β-maaliene or δ-selinene could be responsible of this antibacterial activity. Pristine cold freshwater streams showed to be interesting sources of metabolites-producing microorganisms with antibacterial activity.  相似文献   

11.
The temperature requirements for growth and upper temperature tolerance were determined in 16 macroalgal species collected on Disko Island (Greenland). The upper survival temperatures were examined in 1°C steps, and growth measured at 5°C intervals between 0 and 20°C using a refined method, where the fresh weight was determined weekly or fortnightly over a period of 5 or 6 weeks. To express temperature-growth responses, growth rates of temperature-acclimated plants were taken. Two groups with different temperature requirements were identified: (1) A stenothermal group includingAcrosiphonia arcta, Acrosiphonia sonderi, Urospora penicilliformis, Devaleraea ramentacea, Desmarestia aculeata, Pilayella littoralis, growing between 0 and (10 to) 15 (or 20)°C with optima between 0 and 10°C. The upper survival temperatures in these species and inChromastrum secundatum, Chromastrum virgatulum, Chordaria flagelliformis were between 17 and 23°C (duration of experiment: 2 weeks). (2) A eurythermal group includingEnteromorpha clathrata, Enteromorpha intestinalis andPolysiphonia urceolata growing between 0 and 20°C with growth optima at 10 or 15°C. The upper survival temperatures in these species and inChaetomorpha tortuosa, Bangia atropurpurea andEudesme virescens were between 24 and 31°C. These algal species showed little adaptation to the Arctic temperatures. In contrast, algae from the first group exhibited a relatively high adaptation to low temperatures — approaching the low temperature requirements of Antarctic algae. The results are discussed in relation to the geographic distribution of individual species.  相似文献   

12.
A direct correlation was found between soil water stress and resistance of E. occidentalis leaves to extreme temperatures. A distinct seasonal rhythm of heat and cold resistance of the leaves was recorded. Maximal tolerance was observed towards the end of the dry season, when the resistance value, that is, the temperature injuring 50% of the leaf area at Ilanot was –5.8°C for cold resistance and 51.0°C for heat resistance. The minimal tolerance to extreme temperatures was recorded in the middle of the rainy (winter) season. Irrigation of the trees during the summer reduced both heat and cold resistance.  相似文献   

13.
Recent studies suggest that complex interacting processes are driving global amphibian declines. Increased ultraviolet B (UVB) radiation in the solar spectrum associated with ozone depletion has been implicated in declines, and evidence suggests that the effects of UVB radiation on amphibians may be greater at cooler temperatures. We tested the thermal sensitivity of UVB effects on amphibians in a controlled factorial experiment using the striped marsh frog, Limnodynastes peronii as a model species. We compared survival, growth and locomotor performance of embryonic and larval L. peronii reared under low and high UVB exposures at both 20 and 30 °C. Embryonic and larval L. peronii proved extremely sensitive to UVB damage and exhibited greater sensitivity at 20 °C compared with 30 °C. Embryonic survival to Gosner stage 25 was unaffected by UVB exposure at 30 °C, but at 20 °C survival was reduced to 52% under high UVB. Larval survival exhibited a similar trend. At 20 °C, all tadpoles survived under low UVB, whereas under high UVB there was 100% mortality after 15 days of exposure. At 30 °C, 86% survived under low UVB, but only 46% survived under high UVB. Sublethal effects such as, embryonic malformation, retarded larval growth and reduced larval swimming performance were also greater at 20 °C compared with 30 °C. Our results strongly indicate that UVB damage in amphibians is markedly increased at cooler temperatures. Thus, populations of UVB sensitive species occurring at cold climates may be at greater risk of declines due to increased solar UVB radiation.  相似文献   

14.
Xanthan is an heteropolysaccharide produced by Xanthomonascampestris. Xanthan gum fermentation by a local isolate of X. campestris using different carbon sources was studied. The production of polysaccharide was influenced by the carbon source used. The production of the xanthan was 15.654 g/l with synthetic medium. Production of xanthan at various temperatures ranging between 25v°C and 40v°C was studied. The growth and production was maximum between 25-30v°C. Xanthan production was maximum at pH 7.0-7.5.  相似文献   

15.
Shewanella oneidensis MR-1 has the ability to inhale certain metals and chemical compounds and exhale these materials in an altered state; as a result, this microorganism has been widely applied in bioremediation protocols. However, the relevant characteristics of cell growth and biosynthesis of PuFAs have yet to be thoroughly investigated. Therefore, in this study, we have attempted to characterize the growth and fatty acid profiles ofS. oneidensis MR-1 under a variety of temperature conditions. The fastest growth ofS. oneidensis MR-1 was observed at 30°C, with a specific growth rate and doubling time of 0.6885 h−1 and 1.007 h. The maximum cell mass of this microorganism was elicited at a temperature of 4°C. The eicosapentaenoic acid (EPA) synthesis ofS. oneidensis MR-1 was evaluated under these different culture temperatures.S. oneidensis MR-1 was found not to synthesize EPA at temperatures in excess of 30°C, but was shown to synthesize EPA at temperatures below 30°C. The EPA content was found to increase with decreases in temperature. We then evaluated the EPA biosynthetic pathway, using a phylogenetic tree predicted on 16s rRNA sequences, and the homology of ORFs betweenS. oneidensis MR-1 andShewanella putrefaciens SCRC-2738, which is known to harbor a polyketide synthase (PKS)-like module. The phylogenetic tree revealed that MR-1 was very closely related to bothMoritella sp., which is known to synthesize DHA via a PKS-like pathway, andS. putrefaciens, which has been reported to synthesize EPA via an identical pathway. The homology between the PKS-like module ofS. putrefaciens SCRC-2738 and the entire genome ofS. oneidensis MR-1 was also analyzed, in order to mine the genes associated with the PKS-like pathway inS. oneidensis MR-1. A putative PKS-like module for EPA biosynthesis was verified by this analysis, and was also corroborated by the experimental finding thatS. oneidensis MR-1 was able to synthesize EPA without the expression of dihomo-γ-linoleic acid (DGLA) and arachidonic acid (AA) formed during EPA synthesis via the FAS pathway.  相似文献   

16.
The relationship between distribution boundaries and temperature responses of some North AtlanticCladophora species (Chlorophyta) was experimentally examined under various regimes of temperature, light and daylength. Experimentally determined critical temperature intervals, in which survival, growth or reproduction was limited, were compared with annual temperature regimes (monthly means and extremes) at sites inside and outside distribution boundaries. The species tested belonged to two phytogeographic groups: (1) the tropical West Atlantic group (C. submarina: isolate from Curaçao) and (2) the amphiatlantic tropical to warm temperate group (C. prolifera: isolate from Corsica;C. coelothrix: isolates from Brittany and Curaçao; andC. laetevirens: isolates from deep and shallow water in Corsica and from Brittany). In accordance with distribution from tropical to warm temperate regions, each of the species grew well between 20–30°C and reproduction and growth were limited at and below 15°C. The upper survival limit in long days was <35°C in all species but high or maximum growth rates occurred at 30°C.C. prolifera, restricted to the tropical margins, had the most limited survival at 35°C. Experimental evidence suggests thatC. submarina is restricted to the Caribbean and excluded from the more northerly American mainland and Gulf of Mexico coasts by sporadic low winter temperatures in the nearshore waters, when cold northerly weather penetrates far south every few years. Experimental evidence suggests thatC. prolifera, C. coelothrix andC. laetevirens are restricted to their northern European boundaries by summer temperatures too low for sufficient growth and/or reproduction. Their progressively more northerly located boundaries were accounted for by differences in growth rates over the critical 10–15°C interval.C. prolifera andC. coelothrix are excluded or restricted in distribution on North Sea coasts by lethal winter temperatures, again differences in cold tolerance accounting for differences in their distribution patterns. On the American coast, species were probably restricted by lethal winter temperatures in the nearshore and, in some cases, by the absence of suitable hard substrates in the more equable offshore waters. Isolates from two points along the European coast (Brittany, Corsica) ofC. laetevirens showed no marked differences in their temperature tolerance but the Caribbean and European isolates ofC. coelothrix differed markedly in their tolerance to low temperatures, the lethal limit of the Caribbean isolate lying more than 5°C higher (at ca 5°C).  相似文献   

17.
The effectiveness of rapid chilling or freezing of oysters to reduce Vibrio vulnificus levels in shellfish may be compromised by product handling procedures that permit cold adaptation. When a V. vulnificus culture was shifted from 35°C to 6°C conditions, it underwent transition to a non-culturable state. Cells adapted to 15°C prior to change to 6°C condition, however, remain viable and culturable. In addition, cultures adapted to 15°C were able to survive better upon freezing at −78°C compared with cultures frozen directly from 35°C. Inhibition of protein synthesis by addition of chloramphenicol in a V. vulnificus culture immediately prior to the exposure to the adaptive temperature eliminated inducible cold tolerance. These results suggest that cold-adaptive “protective” proteins may enhance survival and tolerance at cold temperatures. In addition, removal of iron from the growth medium by adding 2,2′-Dipyridyl prior to cold adaptation decreased the viability by approximately 2 logarithm levels. This suggests that iron plays an important role in adaptation at cold temperatures. Analysis of total cellular proteins on an SDS polyacrylamide gel electrophoresis, labeled with 35S-methionine during exposure at 15°C, showed elevated expressions of a 6-kDa and a 40-kDa protein and decreased expression of an 80-kDa protein. These results suggest that, for V. vulnificus, survival and tolerance at cold temperatures could be due to the expression of cold-adaptive proteins other than previously documented major cold shock proteins such as CS7.4 and CsdA. In this study, for the first time we have shown that exposure to an intermediate cold temperature (15°C) causes a cold adaptive response, helping this pathogen remain in culturable state when exposed to a much colder temperature (6°C). This adaptive nature to cold temperatures could be important for shellfish industry efforts to reduce the risk of V. vulnificus infection from consuming raw oysters. Received: 30 July 1998 / Accepted: 1 October 1998  相似文献   

18.
The ability to survive freezing and thawing is a key factor for the existence of life forms in large parts of the world. However, little is known about the freezing tolerance of mycorrhizal fungi and their role in the freezing tolerance of mycorrhizas. Threshold temperatures for the survival of these fungi have not been assessed experimentally. We grew isolates of Suillus luteus, Suillus variegatus, Laccaria laccata, and Hebeloma sp. in liquid culture at room temperature. Subsequently, we exposed samples to a series of temperatures between +5°C and −48°C. Relative electrolyte leakage (REL) and re-growth measurements were used to assess the damage. The REL test indicated that the lethal temperature for 50% of samples (LT50) was between −8.3°C and −13.5°C. However, in the re-growth experiment, all isolates resumed growth after exposure to −8°C and higher temperatures. As many as 64% of L. laccata samples but only 11% in S. variegatus survived −48°C. There was no growth of Hebeloma and S. luteus after exposure to −48°C, but part of their samples survived −30°C. The fungi tolerated lower temperatures than was expected on the basis of earlier studies on fine roots of ectomycorrhizal trees. The most likely freezing tolerance mechanism here is tolerance to apoplastic freezing and the concomitant intracellular dehydration with consequent concentrating of cryoprotectant substances in cells. Studying the properties of fungi in isolation promotes the understanding of the role of the different partners of the mycorrhizal symbiosis in the freezing tolerance.  相似文献   

19.
The upper survival temperature for most isolates ofChondrus crispus from localities ranging from northern Norway and Iceland to Spain, and for an isolate from Nova Scotia, was 28 °C after 2 weeks of exposure to temperatures of 20–31 °C at intervals of 1 °C. An upper survival limit of 29 °C was exhibited by a few European isolates from the English Channel, the North Sea, and one Irish isolate from the upper intertidal. The warm-temperate Japanese speciesC. nipponicus andC. giganteus formaflabellatus survived 30 °C, whereas 29 °C was the upper survival limit for the coldtemperatureC. pinnulatus formapinnulatus from northern Japan. A possible origin ofC. crispus in the north Pacific is discussed.  相似文献   

20.
A common cylindropuntia in the northwestern Sonoran Desert, Opuntia acanthocarpa, was investigated for the following hypotheses: its lower elevational limit is set by high temperatures, so its seedlings require nurse plants; its upper elevational limit is set by freezing; spine shading is the least at intermediate elevations; and changes in plant size and frequency with elevation reflect net CO2 uptake ability. For four elevations ranging from 230 m to 1,050 m, the mean height of O. acanthocarpa approximately doubled and its frequency increased 14-fold. Nurse plants were associated with only 4% of O. acanthocarpa less than 20 cm tall at the two lower elevations compared with 57% at 1,050 m, where putative freezing damage was especially noticeable, suggesting that nurse plants protect from low temperature damage. Spine shading of the stem doubled from the lowest to the highest elevation. Net CO2 uptake, which followed a Crassulacean acid metabolism pattern, was maximal at day/night air temperatures of 25/15°C and was halved by 4 weeks of drought and by reducing the photosynthetic photon flux from 30 to 12 mol m-2 day-1. The root system of O. acanthocarpa was shallow, with a mean depth of only 9 cm for the largest plants. Root growth was substantial and similar for plants at 25/15°C and 35/25°C, decreasing over 70-fold at 15/5°C and 45/35°C. Based on cellular uptake of the vital stain neutral red, neither roots nor stems tolerated tissue temperatures below -5°C for 1 h while both showed substantial high temperature acclimation, roots tolerating 1 h at 61°C and stems 1 h at 70°C for plants grown at 35/25°C. The increase in height and frequency of O. acanthocarpa with elevation apparently reflected both a greater ability for net CO2 uptake and greater root growth and hence water uptake. This species achieves its greatest ecological success at elevations where it becomes vulnerable to low temperature damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号