首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  相似文献   

2.
Lyme borreliosis (LB) group spirochetes, collectively known as Borrelia burgdorferi sensu lato, are distributed worldwide. Wild rodents are acknowledged as the most important reservoir hosts. Ixodes scapularis is the primary vector of B. burgdorferi sensu lato in the eastern United States, and in the southeastern United States, the larvae and nymphs mostly parasitize certain species of lizards. The primary aim of the present study was to determine whether wild lizards in the southeastern United States are naturally infected with Lyme borreliae. Blood samples obtained from lizards in Florida and South Carolina were tested for the presence of LB spirochetes primarily by using B. burgdorferi sensu lato-specific PCR assays that amplify portions of the flagellin (flaB), outer surface protein A (ospA), and 66-kDa protein (p66) genes. Attempts to isolate spirochetes from a small number of PCR-positive lizards failed. However, PCR amplification and sequence analysis of partial flaB, ospA, and p66 gene fragments confirmed numerous strains of B. burgdorferi sensu lato, including Borrelia andersonii, Borrelia bissettii, and B. burgdorferi sensu stricto, in blood from lizards from both states. B. burgdorferi sensu lato DNA was identified in 86 of 160 (54%) lizards representing nine species and six genera. The high infection prevalence and broad distribution of infection among different lizard species at different sites and at different times of the year suggest that LB spirochetes are established in lizards in the southeastern United States.  相似文献   

3.
使用环介导恒温扩增技术,基于莱姆病病原伯氏疏螺旋体的外膜蛋白A(OspA)基因,针对伯氏疏螺旋体不同的基因型设计特异性引物,对国内主要的莱姆病病原伯氏疏螺旋体的3个基因型进行分型鉴定。研究结果表明,设计的引物具有良好的特异性,可以对狭义伯氏疏螺旋体(Borrelia burgdorferi sensu strict)、嘎氏疏螺旋体(B.afzelii)和伽氏疏螺旋体(B.garinii)进行分型鉴定。伯氏疏螺旋体的分型鉴定可以对不同临床症状莱姆病患者的治疗和莱姆病的控制提供一定的依据。  相似文献   

4.
Serum resistance, an important virulence determinant of Borrelia burgdorferi sensu lato strains belonging to the Borrelia afzelii and B. burgdorferi sensu stricto genotypes, is related to binding of the complement inhibitor factor H to the spirochete surface protein outer surface protein E (OspE) and its homologues. In this study, we show that the C-terminal short consensus repeats 18-20 of both human and mouse factor H bind to OspE. Analogously, factor H-related protein 1, a distinct plasma protein with three short consensus repeat domains homologous to those in factor H, bound to OspE. Deleting 15-aa residues (region V) from the C terminus of the OspE paralog P21 (a 20.7-kDa OspE-paralogous surface lipoprotein in the B. burgdorferi sensu stricto 297 strain) abolished factor H binding. However, C-terminal peptides from OspE, P21, or OspEF-related protein P alone and the C-terminal deletion mutants of P21 inhibited factor H binding to OspE only partially when compared with full-length P21 or its N-terminal mutant. Alanine substitution of amino acids in peptides from the key binding regions of the OspE family indicated that several lysine residues are required for factor H binding. Thus, the borrelial OspE family proteins bind the C inhibitor factor H via multiple sites in a lysine-dependent manner. The C-terminal site V (Ala(151)-Lys(166)) is necessary, but not sufficient, for factor H binding in both rodents and humans. Identification of the necessary binding sites forms a basis for the development of vaccines that block the factor H-OspE interaction and thereby promote the killing of Borreliae.  相似文献   

5.
Borrelia burgdorferi outer surface protein (Osp) A is preferentially expressed by spirochetes in the Ixodes scapularis gut and facilitates pathogen-vector adherence in vitro. Here we examined B. burgdorferi-tick interactions in vivo by using Abs directed against OspA from each of the three major B. burgdorferi sensu lato genospecies: B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii. Abs directed against B. burgdorferi sensu stricto (isolate N40) destroy the spirochete and can protect mice from infection. In contrast, antisera raised against OspA from B. afzelii (isolate ACA-1) and B. garinii (isolate ZQ-1) bind to B. burgdorferi N40 but are not borreliacidal against the N40 isolate. Our present studies assess whether these selected OspA Abs interfere with B. burgdorferi-tick attachment in a murine model of Lyme disease with I. scapularis. We examined engorged ticks that had fed on B. burgdorferi N40-infected scid mice previously treated with OspA (N40, ACA-1, ZQ-1, or mAb C3.78) or control Abs. OspA-N40 antisera or mAb C3.78 destroyed B. burgdorferi N40 within the engorged ticks. In contrast, treatment of mice with OspA-ACA-1 and OspA-ZQ-1 antisera did not kill B. burgdorferi N40 within the ticks but did effectively interfere with B. burgdorferi-I. scapularis adherence, thereby preventing efficient colonization of the vector. These studies show that nonborreliacidal OspA Abs can inhibit B. burgdorferi attachment to the tick gut, highlighting the importance of OspA in spirochete-arthropod interactions in vivo.  相似文献   

6.
We have analyzed a panel of independent North American isolates of the Lyme disease agent spirochete, Borrelia burgdorferi (sensu stricto), for the presence of linear plasmids with sequence similarities to the 12 linear plasmids present in the B. burgdorferi type strain, isolate B31. The frequency of similarities to probes from each of the 12 B31 plasmids varied from 13 to 100% in the strain panel examined, and these similarities usually reside on plasmids similar in size to the cognate B31 plasmid. Sequences similar to 5 of the 12 B31 plasmids were found in all of the isolates examined, and >66% of the panel members hybridized to probes from 4 other plasmids. Sequences similar to most of the B. burgdorferi B31 plasmid-derived DNA probes used were also found on linear plasmids in the related Eurasian Lyme agents Borrelia garinii and Borrelia afzelii; however, some of these plasmids had uniform but substantially different sizes from their B. burgdorferi counterparts.  相似文献   

7.
A panel of fourteen different monoclonal antibodies was used for detection and analysis of antigenic determinants located on the outer surface protein A (OspA) of the spirochete Borrelia burgdorferi, which is a causative agent of tick-borne borreliosis (Lyme disease). Two main and several minor partially overlapping antigenic determinants have been found on the surface of the OspA protein of Borrelia burgdorferi sensu stricto (strain 297) by lanthanide competition fluoroimmunoassay. One of the main antigenic determinants is located in the N- and the other in the C-half of the OspA molecule. The involvement of the OspA protein in intact Borrelia burgdorferi sensu stricto (four bacterial strains have been analyzed: 297, B31, FR90-594, and CA90-742) is associated with retention of the above-mentioned two major antigenic determinants, but unlike the case of the isolated OspA they are partially overlapping with each other and with other antigenic determinants. The protein of the spirochete Borrelia afzelii (two bacterial strains have been analyzed: Ip-21 and Pko) contains only one antigenic determinant, which is the same as the main determinant of the OspA protein of Borrelia burgdorferi sensu stricto located in the N-half of the OspA molecule.  相似文献   

8.
Abstract A murine monoclonal antibody, designated MA-2G9, directed against outer surface protein A (OspA) of the Lyme disease spirochete, Borrelia burgdorferi , has been produced. Antibody MA-2G9, IgG1 subclass, was purified by affinity chromatography on protein G Sepharose column and used for purification of OspA antigen from Borrelia burgdorferi cell lysate. Epitope specificity was studied by Western immunoblotting, using several strains of B. burgdorferi and non-Lyme disease bacteria such as Treponema pallidum and B. hermsii . The MA-2G9 monoclonal antibody reacted specifically with recombinant OspA aas well as with native OspA in sonicated B. burgdorferi strains. No reaction was observed with T. pallidum, Escherichia coli, Staphylococcus aureus and B. hermsii lysates. The MA-2G9 antibody also recognized the denatured form of OspA indicating that it is directed against sequential epitope and not conformational epitope.  相似文献   

9.
Thirty-five strains of the Lyme disease spirochete Borrelia burgdorferi sensu lato (B. burgdorferi s. l.) were isolated from the blacklegged tick vector Ixodes scapularis in South Carolina, Georgia, Florida, and Rhode Island. They were characterized by PCR-restriction fragment length polymorphism (RFLP) analysis of rrf (5S)-rrl (23S) intergenic spacer amplicons. PCR-RFLP analysis indicated that the strains represented at least 3 genospecies (including a possible novel genospecies) and 4 different restriction patterns. Thirty strains belonged to the genospecies B. burgdorferi sensu stricto (B. burgdorferi s. s.), 4 southern strains were identified as B. bissettii, and strain SCCH-5 from South Carolina exhibited MseI and DraI restriction patterns different from those of previously reported genospecies. Complete sequences of rrf-rrl intergenic spacers from 14 southeastern and northeastern strains were determined and the phylogenetic relationships of these strains were compared. The 14 strains clustered into 3 separate lineages on the basis of sequence analysis. These results were confirmed by phylogenetic analysis based on 16S rDNA sequence analysis.  相似文献   

10.
Evolution of the Borrelia burgdorferi outer surface protein OspC.   总被引:1,自引:0,他引:1       下载免费PDF全文
The genes coding for outer surface protein OspC from 22 Borrelia burgdorferi strains isolated from patients with Lyme borreliosis were cloned and sequenced. For reference purposes, the 16S rRNA genes from 17 of these strains were sequenced after being cloned. The deduced OspC amino acid sequences were aligned with 12 published OspC sequences and revealed the presence of 48 conserved amino acids. On the basis of the alignment, OspC could be divided into an amino-terminal relatively conserved region and a relatively variable region in the central portion. The distance tree obtained divided the ospC sequences into three groups. The first group contained ospC alleles from all (n = 13) sensu stricto strains, the second group contained ospC alleles from seven Borrelia afzelii strains, and the third group contained ospC alleles from five B. afzelii and all (n = 9) Borrelia garinii strains. The ratio of the mean number of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions per site calculated for B. burgdorferi sensu stricto, B. garinii, and B. afzelii ospC alleles suggested that the polymorphism of OspC is due to positive selection favoring diversity at the amino acid level in the relatively variable region. On the basis of the comparison of 16S rRNA gene sequences, Borrelia hermsii is more closely related to B. afzelii than to B. burgdorferi sensu stricto and B. garinii. In contrast, the phylogenetic tree obtained for the B. hermsii variable major protein, Vmp33, and 18 OspC amino acid sequences suggested that Vmp33 and OspC from B. burgdorferi sensu stricto strains share a common evolutionary origin.  相似文献   

11.
In a previous study, we described the development of a new specific serodiagnostic test for Lyme disease involving enzyme-linked immunosorbent assay and a synthetic peptide, OspC-I. The OspC-I peptide is derived from part of the outer surface protein C (OspC) amino acid sequence of Borrelia burgdorferi and is located in the region conserved among B. burgdorferi sensu stricto or sensu lato isolates. In this study, we demonstrate that sera containing antibodies against OspC-I from patients with early Lyme disease had borreliacidal activity against isolates of three genospecies of Lyme disease spirochete, B. burgdoreferi B31, B. garinii HPI and B. afzelii HT61. However, the borreliacidal activity against B. burgdorferi, which has not been isolated in Japan, was weaker than that against the other species. Vaccination of mice with OspC-I induced the production of anti-OspC-I antibodies in serum with borreliacidal activity. The immune mouse serum had significantly higher levels of borreliacidal activity against HP1 and HT61, than against B31. Neutralization of borreliacidal activity with anti-IgM antibodies showed that the borreliacidal activity of anti-OspC-I antibodies in serum was due to IgM. Furthermore. mice vaccinated with OspC-I were protected against challenge with HPI and HT61. but not fully protected against infection with B31. These results suggest that OspC-I is not only a specific antigen for use in serodiagnostic tests for Lyme disease, but is also a potential candidate for a Lyme disease vaccine in Japan.  相似文献   

12.
Serum samples obtained from white-tailed deer (Odocoileus virginianus) in Connecticut (n=218) and South Carolina (n=20) (USA) during the period 1992-2002 were analyzed for antibodies to whole-cell or recombinant antigens (i.e., fusion proteins) of Borrelia burgdorferi sensu stricto and Anaplasma phagocytophilum, etiologic agents of Lyme borreliosis and granulocytic ehrlichiosis, respectively. In enzyme-linked immunosorbent assays (ELISAs) with whole-cell B. burgdorferi, the overall seropositivity rate for Connecticut (53%) exceeded that for South Carolina (30%). In separate tests of seven recombinant antigens of B. burgdorferi by an ELISA, seroprevalence for the VlsE antigen was highest (48%) in Connecticut followed by outer surface protein (OspF) (21%), whereas serum reactivities to the protein (p) 41-G antigen (55%) and VlsE (25%) were most frequent for South Carolina sera. In analyses for antibodies to the recombinant protein (p) 44 antigen of A. phagocytophilum, seroprevalences of 52% and 25% were recorded for Connecticut and South Carolina samples, respectively. These findings paralleled those determined by indirect fluorescent antibody staining methods with whole cells (43% and 30%). Moreover, there was good agreement (74%) in results of Western blot analyses and an ELISA when a subset of 39 sera was screened with whole-cell or recombinant p44 antigens of A. phagocytophilum. An ELISA with highly specific recombinant VlsE or p44 antigens can be used in conjunction with other antibody tests to determine whether deer living in different regions of eastern United States were exposed to B. burgdorferi or A. phagocytophilum.  相似文献   

13.
Borrelia burgdorferi sensu lato organisms, comprising B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, are tick-borne pathogens causing Lyme borreliosis in humans. To identify putative virulence determinants, a B. afzelii DNA library was screened for Congo red dye binding, a property associated with virulence in pathogenic bacteria. One clone was found to carry a 663-nucleotide-long open reading frame encoding a Congo red dye-binding protein with a calculated molecular mass of 25,660 Da. The amino acid sequence deduced from its nucleotide sequence was found to include a consensus bacterial lipidation site present at residues 15 to 18 (Leu-Ser-Gly-Cys). The lipoprotein nature was demonstrated by incorporation of radioactive palmitate; hence, this protein has been termed NlpH, for new lipoprotein H. NlpH is located on the surface of B. afzelii, and the nlpH gene is found on a circular plasmid. The nlpH gene is also found in B. burgdorferi sensu stricto and B. garinii. Immediately upstream of nlpH is located a smaller reading frame encoding a polypeptide containing the casein kinase II phosphorylation recognition sequence, (Ser/Thr)-X-Y-(Glu/Asp), repeated 10 times.  相似文献   

14.
Fifty-three southern USA Borrelia isolates were characterized using randomly amplified polymorphic DNA fingerprinting analysis (RAPD). Twenty-nine types were recognized among 37 B. andersonii strains, seven types among eight B. bissettii strains, and seven types among seven B. burgdorferi sensu stricto strains. Strain TXW-1 formed a separate RAPD type. Nearly complete sequences of the rrs genes from 17 representative southern Borrelia were determined. The similarity values were found to be 96-100% within the B. burgdorferi sensu lato (s.l.) complex, 94-99% among the relapsing fever borreliae, and 93-99% between the two complexes. Phylogenetic analysis indicated that all the Borrelia strains we analyzed could be divided into two parts: the B. burgdorferi s.l. complex and the relapsing fever borreliae complex. TXW-1 segregated with the North American relapsing fever borreliae and formed a separate subbranch.  相似文献   

15.
We investigated the association between complement resistance and phenotypes of pathogenicity of Borrelia burgdorferi sensu lato isolates cultivated in a LEW/N rat tibiotarsal joint-derived tissue feeder layer-supported co-culture system. Guinea pig complement and immune serum raised in LHS/Ss hamsters caused complete lysis of B. burgdorferi sensu stricto isolate 297, B. afzelii and B. garinii in Barbour-Stoenner-Kelly's medium; however, tissue co-cultured B. burgdorferi sensu stricto contained complement escape variants. The arthritogenicity and infectivity of these variants were tested in 3-week-old Syrian hamsters and in a vaccinated hamster model in which formalin-killed B. burgdorferi sensu stricto C-1-11 vaccinated animals develop severe arthritis after challenge with live, pathogenic, low-passage 297 isolate. Non-animal-passaged complement escape variants were infectious in both animal models as demonstrated by re-isolation from the infected animals and competitive PCR. IP injection of animal-passaged complement escape variants caused development of severe arthritis in vaccinated animals 5 weeks post-injection; animal passage of complement escape variants was necessary for isolation of arthritogenic spirochetes from high-passaged, non-arthritogenic, attenuated borrelia cultures. Complement escape variants synthesized outer surface protein E as demonstrated by SDS-PAGE and western blotting analyses. The complement-mediated selection technique in tissue co-culture provides a novel approach to the studies of Lyme disease, enables us to isolate pathogenically distinct borrelia populations from attenuated cultures and prepare a moderately infectious, non-pathogenic live vaccine against this illness.  相似文献   

16.
The genotype of Borrelia burgdorferi sensu lato was detected in 371 out of 1244 ticks. Borrelia determination was based on partial sequencing of the 16S rRNA gene and real-time polymerase chain reactions for identification and quantitation of ospA and recA genes. Different Borrelia spp. were identified; B. garinii in 40% ticks followed by B. afzelii (36.3%), B. burgdorferi sensu stricto (12.9%), B. valaisiana (3.5%), B. lusitaniae (0.8%), B. bissettii (0.5%) and B. miyamotoi-like (0.5%). Cultivation of 30 borrelia strains in BSK-H medium, among them B. valaisiana, B. bissettii-like and B. miyamotoi-like strains was unique in Czechia. Calibrated microfluidic-based quantification showed differences in the concentration of the nucleic acids and molar mass of the outer surface proteins of different Borrelia spp. with standard sensitivity and specificity and was helpful for their identification. The outer surface protein OspA was absent in B. miyamotoi-like and the OspB protein in B. valaisiana, B. lusitaniae and in three subtypes of B. garinii.  相似文献   

17.
Abstract The expression of outer surface protein C (OspC) was determined for North American Borrelia burgdorferi isolates HB19, DN127c19-2, 25015 and both low and high culture passage B31. A monoclonal antibody detected the presence of OspC protein in only two isolates, while polyclonal antiserum identified this protein in all five isolates. The ospC gene was cloned and sequenced for isolates HB19, DN127c19-2 and 25015, and compared with the published ospC sequences of other Lyme disease spirochetes. Bothe the nucleotide and amino acid sequences were found to vary as much among isolates from the same geographic area as between isolates of different species.  相似文献   

18.
Abstract We developed a quick typing method for Borrelia burgdorferi sensu lato strains using a fla gene-based PCR assay, followed by dot blot hybridization with non-radioactive species-specific probes. Thirty-six out of 46 strains belonged to one of the four described species ( B. burgdorferi sensu stricto n = 11, B. garinii n = 11, B. afzelii n = 9 and B. japonica n = 5) and hybridized with its own species-specific probe. Among the 10 remaining American strains, two new additional genomic groups were identified. This finding was confirmed by direct sequenching of the fla gene-derived amplicons and whole DNA hybridization.  相似文献   

19.
To investigate the role of Toll-like receptor 2 (TLR2)-mediated signaling in host innate defense and development of Lyme disease, the pathogenicity of Borrelia burgdorferi sensu stricto clinical isolates representing two distinct genotypes (RST1 and RST3A) was assessed in TLR2(-/-) C3H/HeJ mice. All TLR2(-/-) mice infected with a B. burgdorferi RST1 isolate developed severe arthritis. The numbers of spirochetes in heart, joint and ear biopsy specimens were significantly higher in TLR2(-/-) mice than in wild-type mice similarly infected as determined by real-time quantitative polymerase chain reaction. Interestingly, despite the higher spirochete levels in heart tissues, milder carditis was observed in TLR2(-/-) than in wild-type mice infected with this RST1 isolate (P=0.02). By contrast, no positive cultures were obtained from any of the blood and tissue specimens from TLR2(-/-) mice inoculated with two RST3A clinical isolates. The data suggest that there is impaired host innate defense against infection and TLR2-independent killing of B. burgdorferi clinical isolates in TLR2-deficient C3H/HeJ mice.  相似文献   

20.
We studied 48 Borrelia isolates that were associated with Lyme borreliosis or were isolated from ticks and identified three DNA relatedness groups by using the S1 nuclease method. The three DNA groups (genospecies) were associated with specific rRNA gene restriction patterns, protein electrophoresis patterns, and patterns of reactivity with murine monoclonal antibodies. Genospecies I corresponded to Borrelia burgdorferi sensu stricto since it contained the type strain of this species (strain ATCC 35210); this genospecies included 28 isolates from Europe and the United States. Genospecies II was named Borrelia garinii sp. nov. and included 13 isolates from Europe and Japan. Genospecies III (group VS461) included seven isolates from Europe and Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号