首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Candidatus Glomeribacter gigasporarum" is an endocellular beta-proteobacterium present in the arbuscular mycorrhizal (AM) fungus Gigaspora margarita. We established a protocol to isolate "Ca. Glomeribacter gigasporarum" from its host which allowed us to carry out morphological, physiological, and genomic investigations on purified bacteria. They are rod shaped, with a cell wall typical of gram-negative bacteria and a cytoplasm rich in ribosomes, and they present no flagella or pili. Isolated bacteria could not be grown in any of the 19 culture media tested, but they could be kept alive for up to 4 weeks. PCR-based investigations of purified DNA from isolated bacteria did not confirm the presence of all genes previously assigned to "Ca. Glomeribacter gigasporarum." In particular, the presence of nif genes could not be detected. Pulsed-field gel electrophoresis analyses allowed us to estimate the genome size of "Ca. Glomeribacter gigasporarum" to approximately 1.4 Mb with a ca. 750-kb chromosome and a 600- to 650-kb plasmid. This is the smallest genome known for a beta-proteobacterium. Such small genome sizes are typically found in endocellular bacteria living permanently in their host. Altogether, our data suggest that "Ca. Glomeribacter gigasporarum" is an ancient obligate endocellular bacterium of the AM fungus G. margarita.  相似文献   

2.
The aim of this paper was to understand whether the endobacterium identified as Candidatus Glomeribacter gigasporarum has an effect on the biology of its host, the arbuscular mycorrhizal fungus Gigaspora margarita, through the study of the modifications induced on the fungal proteome and lipid profile. The availability of G. margarita cured spores (i.e. spores that do not contain bacteria), represented a crucial tool to enable the comparison between two fungal homogeneous populations in the presence and the absence of the bacterial components. Our results demonstrate that the endobacterial presence leads to a modulation of fungal protein expression in all the different conditions we tested (quiescent, germinating and strigolactone-elicited germinating spores), and in particular after treatment with a strigolactone analogue. The fungal fatty acid profile resulted to be modified both quantitatively and qualitatively in the absence of endobacteria, being fatty acids less abundant in the cured spores. The results offer one of the first comparative metabolic studies of an AM fungus investigated under different physiological conditions, reveal that endobacteria have an important impact on the host fungal activity, influencing both protein expression and lipid profile, and suggest that the bacterial absence is perceived by G. margarita as a stimulus which activates stress-responsive proteins.  相似文献   

3.
Intracellular bacteria have been found previously in one isolate of the arbuscular mycorrhizal (AM) fungus Gigaspora margarita BEG 34. In this study, we extended our investigation to 11 fungal isolates obtained from different geographic areas and belonging to six different species of the family Gigasporaceae. With the exception of Gigaspora rosea, isolates of all of the AM species harbored bacteria, and their DNA could be PCR amplified with universal bacterial primers. Primers specific for the endosymbiotic bacteria of BEG 34 could also amplify spore DNA from four species. These specific primers were successfully used as probes for in situ hybridization of endobacteria in G. margarita spores. Neighbor-joining analysis of the 16S ribosomal DNA sequences obtained from isolates of Scutellospora persica, Scutellospora castanea, and G. margarita revealed a single, strongly supported branch nested in the genus Burkholderia.  相似文献   

4.
Arbuscular mycorrhizal (AM) fungi living in symbiotic association with the roots of vascular plants have also been shown to host endocellular rod-shaped bacteria. Based on their ribosomal sequences, these endobacteria have recently been identified as a new taxon, Candidatus Glomeribacter gigasporarum. In order to investigate the cytoplasmic stability of the endobacteria in their fungal host and their transmission during AM fungal reproduction (asexual), a system based on transformed carrot roots and single-spore inocula of Gigaspora margarita was used. Under these in vitro sterile conditions, with no risk of horizontal contamination, the propagation of endobacteria could be monitored, and it was shown, by using primers designed for both 16S and 23S ribosomal DNAs, to occur through several vegetative spore generations (SG0 to SG4). A method of confocal microscopy for quantifying the density of endobacteria in spore cytoplasm was designed and applied; endobacteria were consistently found in all of the spore generations, although their number rapidly decreased from SG0 to SG4. The study demonstrates that a vertical transmission of endobacteria takes place through the fungal vegetative generations (sporulation) of an AM fungus, indicating that active bacterial proliferation occurs in the coenocytic mycelium of the fungus, and suggests that these bacteria are obligate endocellular components of their AM fungal host.  相似文献   

5.
6.
As obligate symbionts of most land plants, arbuscular mycorrhizal fungi (AMF) have a crucial role in ecosystems, but to date, in the absence of genomic data, their adaptive biology remains elusive. In addition, endobacteria are found in their cytoplasm, the role of which is unknown. In order to investigate the function of the Gram-negative Candidatus Glomeribacter gigasporarum, an endobacterium of the AMF Gigaspora margarita, we sequenced its genome, leading to an ∼1.72-Mb assembly. Phylogenetic analyses placed Ca. G. gigasporarum in the Burkholderiaceae whereas metabolic network analyses clustered it with insect endobacteria. This positioning of Ca. G. gigasporarum among different bacterial classes reveals that it has undergone convergent evolution to adapt itself to intracellular lifestyle. The genome annotation of this mycorrhizal-fungal endobacterium has revealed an unexpected genetic mosaic where typical determinants of symbiotic, pathogenic and free-living bacteria are integrated in a reduced genome. Ca. G. gigasporarum is an aerobic microbe that depends on its host for carbon, phosphorus and nitrogen supply; it also expresses type II and type III secretion systems and synthesizes vitamin B12, antibiotics- and toxin-resistance molecules, which may contribute to the fungal host''s ecological fitness. Ca. G. gigasporarum has an extreme dependence on its host for nutrients and energy, whereas the fungal host is itself an obligate biotroph that relies on a photosynthetic plant. Our work represents the first step towards unraveling a complex network of interphylum interactions, which is expected to have a previously unrecognized ecological impact.  相似文献   

7.
Intracellular bacteria have been found previously in one isolate of the arbuscular mycorrhizal (AM) fungus Gigaspora margarita BEG 34. In this study, we extended our investigation to 11 fungal isolates obtained from different geographic areas and belonging to six different species of the family Gigasporaceae. With the exception of Gigaspora rosea, isolates of all of the AM species harbored bacteria, and their DNA could be PCR amplified with universal bacterial primers. Primers specific for the endosymbiotic bacteria of BEG 34 could also amplify spore DNA from four species. These specific primers were successfully used as probes for in situ hybridization of endobacteria in G. margarita spores. Neighbor-joining analysis of the 16S ribosomal DNA sequences obtained from isolates of Scutellospora persica, Scutellospora castanea, and G. margarita revealed a single, strongly supported branch nested in the genus Burkholderia.  相似文献   

8.
A full-length cDNA encoding a metallothionein (MT)-like polypeptide, designated GmarMT1, was identified in an expressed sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG34). The GmarMT1 gene is composed of two exons separated by an 81-bp intron. It codes for a 65-amino acid polypeptide comprising a plant type 1 MT-like N-terminal domain and a C-terminal domain that is most closely related to an as-yet-uncharacterized fungal MT. As revealed by heterologous complementation assays in yeast, GmarMT1 encodes a functional polypeptide capable of conferring increased tolerance against Cd and Cu. The GmarMT1 RNA is expressed in both presymbiotic spores and symbiotic mycelia, even in the absence of metal exposure, but is significantly less abundant in the latter stage. An opposite pattern was observed upon Cu exposure, which up-regulated GmarMT1 expression in symbiotic mycelia but not in germinated spores. Together, these data provide the first evidence, to our knowledge, for the occurrence in an arbuscular mycorrhizal fungus of a structurally novel MT that is modulated in a metal and life cycle stage-dependent manner and may afford protection against heavy metals (and other types of stress) to both partners of the endomycorrhizal symbiosis.  相似文献   

9.
10.
Many eukaryotes interact with heritable endobacteria to satisfy diverse metabolic needs. Some of these interactions are facultative symbioses, in which one partner is not essential to the other. Facultative symbioses are expected to be transitional stages along an evolutionary trajectory toward obligate relationships. We tested this evolutionary theory prediction in Ca. Glomeribacter gigasporarum, nonessential endosymbionts of arbuscular mycorrhizal fungi (Glomeromycota). We found that heritable facultative mutualisms can be both ancient and evolutionarily stable. We detected significant patterns of codivergence between the partners that we would only expect in obligate associations. Using codiverging partner pairs and the fungal fossil record, we established that the Glomeromycota-Glomeribacter symbiosis is at least 400 million years old. Despite clear signs of codivergence, we determined that the Glomeribacter endobacteria engage in recombination and host switching, which display patterns indicating that the association is not evolving toward reciprocal dependence. We postulate that low frequency of recombination in heritable endosymbionts together with host switching stabilize facultative mutualisms over extended evolutionary times.  相似文献   

11.
Spores of vesicular arbuscular mycorrhizal (VAM) fungi contain thousands of nuclei. In order to understand the karyotic structure of a VAM fungus spore, the genetic variation of the first generation of spores from a VAM fungus (Gigaspora margarita) was examined. Spores originating from both single- and multispore inoculations of the species G. margarita were analyzed by M13 minisatellite-primed PCR. In both cases, different fingerprints were obtained from individual spores with few spores exhibiting similar fingerprints. These results can be explained only by a heterokaryotic status of the nuclear population within a spore.  相似文献   

12.
为研究丛枝菌根真菌对宿主植物根分泌物的影响,在营养液培养条件下成功地建立了菌根真菌Gigaspora margarita与转移Ri T-DNA胡萝卜根器官之间的无菌单主寄生培养方法。接种发芽的孢子四个月后,对根段染色观测,发现萌发孢子的菌丝能够入侵到根段的皮层细胞内,根细胞内有菌丝的折叠卷曲现象,并开始形成了新的孢子。利用高压液相色谱测定各处理营养液中根分泌物的成分,发现菌根分泌的苹果酸和乙酸含量高于对照处理,菌根营养液的pH升高幅度也大于未接种的对照根。  相似文献   

13.
培养容器容积对AM真菌生长发育的影响   总被引:1,自引:0,他引:1  
研究宿主植物栽培容器对丛枝菌根(Arbuscularmycorrhizae,AM)真菌Glomusmosseae生长发育的影响。结果表明:小容积容器的根系密度相对较大,在菌根共生体建立初期,菌根真菌繁殖体与根接触的机会增大,对于菌根真菌的迅速侵染及共生体的迅速建立非常有利,同时还增大了根外菌丝二次侵染的机会,从而使菌根真菌生长发育形成了一个良性循环,最终有利于根外孢子的形成。容器对共生体的影响决不是简单的盆的体积问题,而与其面积和体积之比有关,也和种植密度有密切关系。  相似文献   

14.
Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.  相似文献   

15.
16.
The arbuscular mycorrhizal (AM) fungus Gigaspora margarita harbors a resident population of endosymbiontic Burkholderia in its cytoplasm. Nothing is known about the acquisition of such bacteria and about the molecular bases which allow colonization of the fungus. We wondered whether the intracellular Burkholderia strain possesses genetic determinants involved in colonization of a eukaryotic cell. Using degenerated oligonucleotide primers for vacB, a gene involved in host cell colonization by pathogenic bacteria, an 842 bp DNA fragment was cloned, sequenced, and identified as a part of the vacB gene in Burkholderia sp. The insert was used as a probe to screen a fungal library that, because of the presence of intracellular Burkholderia cells, was also representative of the bacterial genome. The complete nucleotide sequence of vacB and flanking genes was determined. The bacterial origin of this genomic region was established by PCR, using specific vacB primers on DNA from Gigasporaceae that did or did not contain cytoplasmic Burkholderia, as well as on DNA from other bacteria, including free-living Burkholderia. We hypothesize that the vacB gene is part of a new genetic region acquired by a rhizospheric Burkholderia strain, which became able to establish a symbiotic interaction with the AM fungus G. margarita.  相似文献   

17.
The influence of three organic compounds and bakers' dry yeast on growth of external mycelium and phosphorus uptake of the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith (BEG 87) was examined. Two experiments were carried out in compartmentalized growth systems with root-free sand or soil compartments. The sand and soil in the root-free compartments were left untreated or uniformly mixed with one of the following substrates (0.5 mg g−1 soil): bakers' dry yeast, bovine serum albumin, starch or cellulose. Effects of the organic substrates on biomass and hyphal length density of the arbuscular mycorrhizal fungus were examined by using specific fatty acid signatures in combination with direct microscopy. Micro-organisms other than the arbuscular mycorrhizal fungus were measured by fatty acid signatures, and radioactive 33P labelling of the root-free soil was used to determine arbuscular mycorrhizal hyphal phosphorus uptake. In general, hyphal growth of G. intraradices was enhanced by yeast and bovine serum albumin, whereas the carbon sources, starch and cellulose, depressed fungal growth. By analysing the fatty acid 16:1ω5 from phospholipids (indicating mycelium) and neutral lipids (indicating storage structures) it was shown that increased fungal growth due to yeast was mainly in vegetative hyphae and less in storage structures. Arbuscular mycorrhizal hyphal phosphorus uptake was decreased by cellulose, but unaffected by the other substrates compared with the control. This means that both growth and phosphorus transport by the arbuscular mycorrhizal fungus were decreased under cellulose treatment. However, the composition of the microbial community varied under different substrate conditions indicating a possible interactive component with arbuscular mycorrhizal hyphal growth and phosphorus uptake.  相似文献   

18.
A combined approach based on quantitative and nested polymerase chain reaction (qPCR and nPCR, respectively) has been set up to detect and quantify the unculturable endobacterium Candidatus Glomeribacter gigasporarum inside the spores of its fungal host Gigaspora margarita. Four genes were targeted, two of bacterial origin (23S rRNA gene and rpoB) and two from the fungus (18S rRNA gene and EF1-alpha). The sensitivity of the qPCR protocol has proved to be comparable to that of nPCR, both for the fungal and the bacterial detection. It has been demonstrated that the last detected dilution in qPCR corresponded, in each case, to 10 copies of the target sequences, suggesting that the method is equally sensitive for the detection of both fungal and bacterial targets. As the two targeted bacterial genes are predicted to be in single copy, it can be concluded that the detection limit is of 10 bacterial genomes for each mixture. The protocol was then successfully applied to amplify fungal and bacterial DNA from auxiliary cells and extraradical and intraradical mycelium. For the first time qPCR has been applied to a complex biological system to detect and quantify fungal and bacterial components using single-copy genes, and to monitor the bacterial presence throughout the fungal life cycle.  相似文献   

19.
研究离体培养条件下多胺 (PUT,SPD,SPM) 及多胺生物合成抑制剂 (MGBG) 对丛枝菌根真菌 (Glomus mosseae, Gigaspora margarita) 孢子萌发特性及菌丝生长发育的影响。试验结果表明,3种多胺类物质在50 ~200g/ml浓度范围内,对丛枝菌根真菌生长发育具显著促进作用,而500礸/ml浓度处理对丛枝菌根真菌生长发育表现强烈的抑制效应。MGBG (50 ~500g/ml) 对丛枝菌根真菌生长发育有较强的抑制作用,且可被外源多胺部分解除,但随浓度升高外源多胺的恢复作用降低,500礸/ml时无效。多胺对丛枝菌根真菌生长发育的促进作用因多胺类型及真菌菌种的变化而有不同的最适浓度范围。作者认为丛枝菌根真菌体内内源多胺的含量也许是其生长发育的限制因子。  相似文献   

20.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号