首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta Oecologica》2006,29(3):213-220
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

2.
Summary Of 36 plant species surveyed, 6 were significantly associated with nests of the desert seed-harvester ant Veromessor pergandei or Pogonomyrmex rugosus; two other plant species were significantly absent from ant nests. Seeds of two common desert annuals, Schismus arabicus and Plantago insularis, realize a 15.6 and 6.5 fold increase (respectively) in number of fruits or seeds produced per plant growing in ant nest refuse piles compared to nearby controls. Mass of individual S. arabicus seed produced by plants growing in refuse piles also increased significantly. Schismus arabicus, P. insularis and other plants associated with ant nests do not have seeds with obvious appendages attractive to ants. Dispersal and reproductive increase of such seeds may represent a relatively primitive form of ant-plant dispersal devoid of seed morphological specializations. Alternatively, evolution of specialized seed structures for dispersal may be precluded by the assemblage of North American seed-harvester ants whose workers are significantly larger than those ants normally associated with elaiosome-attached seed dispersal. Large worker size may permit consumption of elaiosome and seed.  相似文献   

3.
Although seed dispersal by ants might reduce seed predation near the parent plants, predation on discarded seeds clustered on nest refuse piles may reduce any initial benefit provided by seed removal. Here we examine the fate of Croton sonderianus seeds that were discarded by Pheidole fallax Mayr ants on their nest refuses in caatinga vegetation of northeast Brazil. We collected all seeds discarded in refuse piles of 20 nests and within a radius of 50 cm from their borders, and examined them for evidence of predation. A total of 3,017 seeds were recorded either located in the P. fallax refuse piles (89.1%) or nest vicinity (10.9%). Predation was three fold higher in nest vicinity as compared to refuse piles. By removing seeds from beneath parent plants and relocating then to refuse piles, P. fallax is possibly providing double protection services for C. sonderianus seeds. Our findings represent the first evidence for predator-avoidance as benefit for plants resulting from ant seed-dispersal in the neotropics.  相似文献   

4.
The role of harvester ants in Mediterranean grassland and scrubland has mostly focused on seed consumption. However, recent studies have reported their role as accidental dispersal agents of some of the collected seeds via refuse piles. The objective of this study is to examine the effect of the ant Messor barbarus on seed availability and dispersal of one of its major diet components, Lavandula stoechas subsp. pedunculata, in scrubland, grassland and the ecotones between them. After confirming and quantifying the Lavandula contribution to M. barbarus diet, we described the spatial and temporal patterns of pre- and post-dispersal seed predation, seed content and seedling occurrence in the refuse piles. Our results show that: (1) Lavandula propagules constitute a high proportion of the prey items collected by M. barbarus, with particularly intense collection activity in mid-summer, spring and autumn, in decreasing order. (2) Pre-dispersal predation rate was significantly higher in the ecotone than in the scrubland (76% and 13.5% of total seed production lost respectively). (3) Season and propagule type (seed vs. fruit) were the most significant variables explaining the post-dispersal predation probability, which approached 100% of seeds after 48 h in mid-summer. (4) Viable Lavandula seeds were found in refuse piles at densities of 0.06–0.2 per g of refuse pile material, or 58.8–207.2 per refuse pile. On the one hand, these results indicate that the ecotones are most affected by M. barbarus pre-dispersal consumption, which may locally limit Lavandula colonisation. On the other hand, the small proportion of consumed seeds that is dispersed to refuse piles may be relevant at the population level, as this dispersal implies arrival at potentially favourable sites for establishment.  相似文献   

5.
Ants have been traditionally considered either as predators or dispersers of seeds, but not both. That is, ant dispersal is restricted to myrmecochorous seeds, while almost all seeds removed by seed‐harvesting ants are eaten. However, harvesting ants might be simultaneously antagonistic and mutualistic towards seeds. This study analyzes the predation–dispersal relationship between seed‐harvesting ants and seeds of Lobularia maritima, a non‐myrmechorous perennial herb, in order to disentangle the dual role of ants as dispersers and predators of L. maritima seeds. The results obtained confirm the role of harvesting ants as both predators and dispersers of the non‐myrmechorous seeds of L. maritima. The removal activity of Messor bouvieri on L. maritima seeds is very important, particularly in autumn, which is the flowering and fruiting peak of this plant. It can be estimated that harvesting ants collect more than 85% of seeds, and almost 70% of them are effectively lost to predation. However, these granivorous ants also have drawbacks as seed dispersers. There is a relatively small percent of seeds collected by ants that escape predation, either because they are dropped on the way to the nest (16.4% of seeds harvested), or because they are mistakenly rejected on the refuse pile (0.9%). Abiotic dispersal of L. maritima seeds in the absence of ants occurs over very short distances from the plant stem. As seeds dispersed by ants reach a considerably greater distance than that obtained by gravity, this might represent a real advantage for the species, because it reduces intraspecific adult competition for seedlings, which directly influences seedling survivorship. These results challenge the generalization that seed removal by ants generally leads to successful seed dispersal if done by legitimate seed dispersers, or seed loss if done by seed consumers that eat them, and confirm that harvesting ants might have a dual role as both predators and dispersers of nonmyrmechorous seeds.  相似文献   

6.
Endophytic fungi are thought to interact mutualistically with host plants by producing alkaloid metabolites that deter herbivory. Since such fungi are transmitted via seed in some grasses, the presence of endophytes may also protect plants from seed predators. We conducted seed choice experiments for two dominant seed harvesting ants, Pogonomyrmex rugosus in the Sonoran desert and Pogonomyrmex occidentalis at a higher elevation, riparian zone in Arizona, USA. Non-infected fescue (Festuca arundinacea) seeds and seeds infected with the endophytic fungus, Acremonium coenophialum, were presented to ant colonies in three different populations. Infected seeds were harvested less frequently than non-infected seed for the two populations of Pogonomyrmex rugosus but not for the population of Pogonomyrmex occidentalis. We also a conducted seed dispersal experiment for one population of Pogonomyrmex rugosus. Of the seeds that were harvested, most of the colonies discarded more infected seeds into refuse piles than expected by chance. Seeds discarded into refuse piles have greater germination success than surrounding areas. The most important interaction of endophytes and grasses may be deterrence of seed predation and enhancing the probability of germinating in favorable sites, since these processes directly increase plant fitness.  相似文献   

7.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

8.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

9.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

10.
The population dynamics of invasive plants are influenced by positive and negative associations formed with members of the fauna present in the introduced range. For example, mutualistic associations formed with pollinators or seed dispersers may facilitate invasion, but reduced fitness from attack by native herbivores can also suppress it. Since population expansion depends on effective seed dispersal, interactions with seed dispersers and predators in a plant species introduced range may be of particular importance. We explored the relative contributions of potential seed dispersers (ants) and vertebrate predators (rodents and birds) to seed removal of two diplochorous (i.e., wind- and ant-dispersed), invasive thistles, Cirsium arvense and Carduus nutans, in Colorado, USA. We also conducted behavior trials to explore the potential of different ant species to disperse seeds, and we quantified which potential ant dispersers were prevalent at our study locations. Both ants and vertebrate predators removed significant amounts of C. arvense and C. nutans seed, with the relative proportion of seed removed by each guild varying by location. The behavior trials revealed clear seed preferences among three ant species as well as differences in the foragers’ abilities to move seeds. In addition, two ant species that acted as potential dispersal agents were dominant at the study locations. Since local conditions in part determined whether dispersers or predators removed more seed, it is possible that some thistle populations benefit from a net dispersal effect, while others suffer proportionally more predation. Additionally, because the effectiveness of potential ant dispersers is taxon-specific, changes in ant community composition could affect the seed-dispersal dynamics of these thistles. Until now, most studies describing dispersal dynamics in C. arvense and C. nutans have focused on primary dispersal by wind or pre-dispersal seed predation by insects. Our findings suggest that animal-mediated dispersal and post-dispersal seed predation deserve further consideration.  相似文献   

11.
Morphological defense traits of plants such as trichomes potentially compromise biological control in agroecosystems because they may hinder predation by natural enemies. To investigate whether plant trichomes hinder red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), as biological control agents in soybean, field and greenhouse experiments were conducted in which we manipulated fire ant density in plots of three soybean isolines varying in trichome density. Resulting treatment effects on the abundance of herbivores, other natural enemies, plant herbivory, and yield were assessed. Trichomes did not inhibit fire ants from foraging on plants in the field or in the greenhouse, and fire ant predation of herbivores in the field was actually greater on pubescent plants relative to glabrous plants. Consequently, fire ants more strongly reduced plant damage by herbivores on pubescent plants. This effect, however, did not translate into greater yield from pubescent plants at high fire ant densities. Intraguild predation by fire ants, in contrast, was weak, inconsistent, and did not vary with trichome density. Rather than hindering fire ant predation, therefore, soybean trichomes instead increased fire ant predation of herbivores resulting in enhanced tritrophic effects of fire ants on pubescent plants. This effect was likely the result of a functional response by fire ants to the greater abundance of caterpillar prey on pubescent plants. Given the ubiquity of lepidopteran herbivores and the functional response to prey shown by many generalist arthropod predators, a positive indirect effect of trichomes on predation by natural enemies might be more far more common than is currently appreciated.  相似文献   

12.
蚁对植物种子的传播作用   总被引:4,自引:0,他引:4  
许多种子植物依靠动物传播种子 ,称为动物传播。根据动物类群的不同 ,可分为哺乳类传播 ,鸟传播 ,鱼传播 ,蚁传播等。鸟传播和蚁传播的研究近年取得了很大的进展 ,但国内在这方面研究较缺乏 ,作者已就鸟传播作了综述报道 ,现将蚁传播的研究综述报道如下。1 蚁与植物的相互关系蚁类属膜翅目 (Hymenoptera) ,蚁科 (Formici dae) ,典型的社会性昆虫。多数蚁类是肉食性的 ,以小动物或更小的蚁类为食 ,但也有很多蚁类是植物食性的。在大多数生态系统中均有蚁类分布 ,而且蚁类数量众多 ,在森林生态系统中每 1ha可达 6~10…  相似文献   

13.
Small-scale disturbances caused by animals often modify soil resource availability and may also affect plant attributes. Changes in the phenotype of plants growing on disturbed, nutrient-enriched microsites may influence the distribution and abundance of associated insects. We evaluated how the high nutrient availability generated by leaf-cutting ant nests in a Patagonian desert steppe may spread along the trophic chain, affecting the phenotype of two thistle species, the abundance of a specialist aphid and the composition of the associated assemblage of tending ants. Plants of the thistle species Carduus nutans and Onopordum acanthium growing in piles of waste material generated by leaf-cutting ant nests (i.e., refuse dumps) had more leaves, inflorescences and higher foliar nitrogen content than those in non-nest soils. Overall, plants in refuse dumps showed higher abundance of aphids than plants in non-nest soils, and aphid colonies were of greater size on O. acanthium plants than on C. nutans plants. However, only C. nutans plants showed an increase in aphid abundance when growing on refuse dumps. This resulted in a similar aphid load in both thistle species when growing on refuse dumps. Accordingly, only C. nutans showed an increase in the number of ant species attending aphids when growing on refuse dumps. The increase of soil fertility generated by leaf-cutting ant nests can affect aphid abundance and their tending ant assemblage through its effect on plant size and quality. However, the propagation of small-scale soil disturbances through the trophic chain may depend on the identity of the species involved.  相似文献   

14.
Mario Díaz 《Oecologia》1992,91(4):561-568
Summary Patterns of granivorous ant seed predation in extensive cereal croplands of central Spain were investigated by measuring seed removal rates on artificial seed patches. Sampling was designed to cope with the seasonal and daily foraging cycle of ant colonies. Simultaneously with removal rates, I measured seed availability, habitat physiognomy at two spatial scales (landscape and microhabitat), weather variables (temperature and rainfall), and distance to the nearest ant nest. Ant seed predation was concentrated on shrublands, and associated with places with high covers of shrubs, chamaephytes and stones. These results were in close agreement with those obtained by analyzing the spatial distribution of granivorous ant nests (Díaz 1991). Moreover, there was a close relationship between seed removal rates and distance to the nearest ant nest, that fitted the predictions of the optimal foraging model developed by Reyes-López (1987). Seasonal and daily patterns of ant foraging activity seemed to depend more on endogenous factors than on environmental variation. I conclude that ants were not able to track the spatial and temporal variation of their food resources in these man-modified habitats, so that their potential to interact with other members of the granivore system is greatly reduced by human activities.  相似文献   

15.
The modes of seed dispersal in the prostrate annual, Chamaesyce maculata, with multiple overlapping generations were investigated. We found that C. maculata has two modes of seed dispersal; autochory in the summer and myrmecochory in the autumn. Seasonally different modes of seed dispersal have not been known in other plant species. The large proportion of seeds produced in the summer was positioned further than the expanse of the parent plants by automatic mechanical seed dispersal. Therefore, autochory would be effective for avoiding competition between parent and offspring plants. No autochory occurred in the seeds produced in the autumn. The seeds of C. maculata without an elaiosome were dispersed by seed-collecting ants in the autumn. Although 18 ant species in total visited the plants of C. maculata at the 50 sites investigated, only two ant species, Tetramorium tsushimae and Pheidole noda frequently carried the seeds of C. maculata. The low frequency of seeds carried out of the nest by P. noda suggests that the workers of P. noda carry the seeds as food into their nest. So, P. noda might be a less effective seed disperser for C. maculata, corresponding to the effectiveness of seed dispersal by harvester ants. However, T. tsushimae ants frequently carried the seeds into and out of their nest, suggesting that T. tsushimae do not regard the seeds of C. maculata as a food resource. Thus, T. tsushimae may be an effective seed disperser for C. maculata.  相似文献   

16.
Seeds are often carried by omnivorous ants even if they do not carry elaiosomes. Although many seeds carried by ants are consumed, both seeds abandoned during the seed carrying and leftover seeds are consequently dispersed (dyszoochory). These non-myrmecochorous seeds do not necessarily attract ants quickly. Therefore, these seeds often seem to be exposed to the danger of consumption by pre-dispersal seed predators. We propose the hypotheses, “seed predator deterrence hypothesis” that plants may benefit from seed-carrying ants if they deter seed predators from visiting plants, and seed-carrying ants may play additional roles in plant reproductive success, besides dyszoochory by ants. To test the hypotheses, we investigated the abundance of seed-carrying ants of the species Tetramorium tsushimae Linnaeus and Pheidole noda Smith F., and of the seed predatory stinkbug, Nysius plebeius Distat, on the spotted sandmat, Chamaesyce maculata L. Small, of which the seeds have no elaiosomes but are consumed by both ants and bugs. In the field, ants and stinkbugs seldom encountered each other on the plant. The number of stinkbugs beneath the plants with ants was smaller than that beneath the plants without ants. In laboratory experiments, the number of stinkbugs on the shoot was smaller when ants were present than when they were absent. These results might support the seed predator deterrence hypothesis: the probability of seed predation by stinkbugs seems to be reduced by the ant visits on plants and/or the existence of ants beneath the plants. This study highlights a new ant–plant interaction in seed dispersal by ants.  相似文献   

17.
Byrne  M. M.  Levey  D. J. 《Plant Ecology》1993,107(1):363-374
At our Costa Rican field site, seeds defecated by frugivorous birds usually do not remain where they have been deposited. Many species of ants are attracted to frugivore defecations and remove seeds and/or pulp. Pheidole species selectively remove seeds, fungus-growing species (tribe Attini) remove both pulp and seeds. Seeds of many Melastomataceae have an appendage, which we hypothesized is an elaiosome. Indeed, preference trials demonstrated that two species of Pheidole selected seeds with the appendage over seeds of the same species in which the appendage had been removed. However, we found that these ants did not take the appendage when it was offered by itself. We conclude that the appendage is not an elaiosome. In further trials, different ant species preferentially selected different seed species. These ants consumed some seeds and deposited others unharmed in refuse piles. We conclude that because the composition of leaf-litter ant communities is highly variable between neighboring square meter plots, and the probability of seed predation depends upon the species of ant, the over-all effect of ants on seed shadows and seed banks is spatially unpredictable. Addendum: The names of the two Pheidole emphasized in this study. P. nebulosa and P. nigricula, are unpublished names from a generic revision being prepared by E. O. Wilson and W. L. Brown. Their use here is not intended to constitute taxonomic publication but is solely for more precise indentification in future ecological research of similar nature  相似文献   

18.
Philip E. Hulme 《Oecologia》1997,111(1):91-98
The post-dispersal fate of seeds and fruit (diaspores) of three vertebrate-dispersed trees, Crataegus monogyna, Prunus mahaleb and Taxus baccata, was studied in the Andalusian highlands, south-eastern Spain. Exclosures were used to quantify separately the impact of vertebrates and invertebrates on seed removal in relation to diaspore density and microhabitat. The three plant species showed marked differences in the percentage of diaspores removed, ranging from only 5% for C. monogyna to 87% for T. baccata. Although chaffinches (Fringilla coelebs) fed on diaspores, rodents (Apodemus sylvaticus) were the main vertebrate removers of seed and fruit. Two species of ant (Cataglyphis velox and Aphaenogaster iberica) were the only invertebrates observed to remove diaspores. However, the impact of ants was strongly seasonal and they only removed P. mahaleb fruit to any significant extent. While removal of seed by rodents was equivalent to predation, ants were responsible for secondary dispersal. However, their role was limited to infrequent, small-scale redistribution of fruit in the vicinity of parent trees. Rodents and ants differed in their use of different microhabitats. Rodents foraged mostly beneath trees and low shrubs and avoided open areas while the reverse was true of ants. Thus, patterns of post-dispersal seed removal will be contigent on the relative abundance and distribution of ants and rodents. Studies which neglect to quantify separately the impacts of these two guilds of seed removers may fail to elucidate the mechanisms underlying patterns of post-dispersal seed removal. The coincidence of both increased seed deposition by the main avian dispersers (Turdus spp.) and increased seed predation with increasing vegetation height suggested that selection pressures other than post-dispersal seed predation shape the spatial pattern of seed dispersal. Rather than providing a means of escaping post-dispersal seed predators, dispersal appears to direct seeds to microhabitats most suitable for seedling survival. Nevertheless, the reliance of most vertebrate-dispersed trees on regeneration by seed and the absence of persistent soil seed banks imply that post-dispersal seed predators may exert a strong influence on the demography of the plants whose seeds they consume. Even where microsites are limited, the coincidence of the most suitable microhabitats for seedling establishment with those where seed predation is highest provide a means by which selective seed predators can influence community composition. Received: 19 August 1996 / Accepted: 25 January 1997  相似文献   

19.
1. Ant–plant mutualisms are among the most widespread and ecologically important insect–plant interactions in the tropics. The multitrophic mutualism involving Macaranga plants (Euphorbiaceae) and Crematogaster ants (Formicidae) is the most diverse in Southeast Asia. This interaction also includes trophobiotic scale insects (Coccidae) and nematodes inhabiting ant refuse piles. 2. Here two myrmecophytic systems were compared, Macaranga trachyphylla with Crematogaster captiosa (Mt + Cc) and Macaranga beccariana with Crematogaster decamera (Mb + Cd), using a fine‐scale dissection of the stems. For the two plant species, for each internode, both contents (ants, coccids, refuse piles) and structure (internode height, numbers of open and occluded ant holes) were recorded. 3. There were significant patterns in the vertical distribution of ant colonies and their symbionts in the plant stems. Most coccids were kept in the highest sections of both systems, although Mb + Cd hosted a broader range of coccid species than Mt + Cc. Three nematode species were recorded, but with a rather low specificity to plant or ant species. Furthermore, the fine‐scale distribution showed aggregation of closed holes with ant brood and separation of nematode‐infested refuse piles from eggs. 4. The results of this study indicate that ants manipulate spatial colony structure via distribution of brood, holes and the symbionts. It is suggested that ants optimise the location of refuse piles and occluded holes via spatial heterogeneity in their distribution among internodes. This paper discusses the protective role of occluded holes and demonstrates some general interactions with other symbiotic fauna.  相似文献   

20.
Erythronium dens-canis is a geophyte which produces a single flower each season. The fruits produce small seeds with relatively large elaiosomes. We performed experiments to investigate primary and secondary seed dispersal mechanisms of this species in different habitats in the western part of the Cantabrian Range in northwest Spain. Sticky traps were used to measure primary dispersal of seeds up to 0.5 m from mother plants. Seed cafeteria experiments were performed in different habitats to examine the role of ants and rodents in secondary seed transport and seed predation. Our results indicate that: (a) primary seed dispersal is positively skewed (99% of seeds fall within 20 cm of the mother plant) and seed dispersal distances vary significantly among plants; (b) secondary dispersal is exclusively by myrmecochory, although the proportion of seeds removed by ants differs significantly among habitats; (c) ant species composition and abundances vary among habitats; and (d) freshly dropped seeds are more likely to be removed than seeds that have begun to dry out. We conclude that secondary dispersal of seeds is greatly influenced by habitat but not by small-scale microhabitat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号