首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Larose  N McNicoll  H Ong  A De Léan 《Biochemistry》1991,30(37):8990-8995
Atrial natriuretic factor (ANF-R1) receptor is a 130-kDa protein that contains a cytoplasmic guanylate cyclase domain. We report that ATP interacts in an allosteric manner with the ANF-R1 receptor, resulting in reduced ANF binding and enhanced ANF-stimulated guanylate cyclase activity. The modulatory properties of various nucleotides indicate a preference for the adenine family with a rank order of potency of ATP greater than App(NH)p greater than or equal to ADP greater than or equal to AMP while cyclic and guanine nucleotides except GTP are inactive. The negative modulation by ATP of ANF binding is specific for the ANF-R1 receptor subtype since the amount of ANF bound by the guanylate cyclase uncoupled ANF-R2 subtype is increased in the presence of ATP. Furthermore, the effects of ATP on ANF-R1 receptor binding function are still observed with the affinity-purified ANF-R1 receptor, suggesting an allosteric binding site for ATP on the ANF-R1 receptor. In intact membranes, limited proteolysis of the ANF-R1 receptor with trypsin dose-dependently prevents the ATP-induced decrease in ANF binding concomitantly with the formation of a membrane-associated ANF-binding fragment of 70 kDa. These results confirm the direct modulatory role of ATP on hormone binding activity of ANF-R1 receptor and suggest that the nucleotide regulatory binding site is located in the intracellular domain vicinal to the protease-sensitive region.  相似文献   

2.
Atrial natriuretic factor (ANF) is a peptide hormone from the heart atrium with potent natriuretic and vasorelaxant activities. The natriuretic activity of ANF is, in part, mediated through the adrenal gland, where binding of ANF to the 130-kDa ANF receptor causes suppression of aldosterone secretion. Incubation of bovine adrenal membranes at pH < 5.6 caused a rapid and spontaneous cleavage of the 130-kDa ANF receptor, yielding a 65-kDa polypeptide that could be detected by photoaffinity labeling by 125I-labeled N alpha 4-azidobenzoyl-ANF(4-28) followed by SDS/PAGE under reducing conditions. Within 20 min of incubation at pH 4.0, essentially all the 130-kDa receptor was converted to a 65-kDa ANF binding protein. This cleavage reaction was completely inhibited by inclusion of 5 mM EDTA. When SDS/PAGE was carried out under non-reducing conditions, the apparent size of the ANF receptor remained unchanged at 130 kDa, indicating that the 65-kDa ANF-binding fragment was still linked to the remaining part(s) of the receptor polypeptide through a disulfide bond(s). The disappearance of the 130-kDa receptor was accompanied by a parallel decrease in guanylate cyclase activity in the membranes. Inclusion of EDTA in the incubation not only prevented cleavage of the 130-kDa receptor, but also protected guanylate cyclase activity, indicating that proteolysis, but not the physical effects of the acidic pH, causes inactivation of guanylate cyclase. The 130-kDa ANF receptor in adrenal membranes was competitively protected from photoaffinity labeling by ANF(1-28) or ANF(4-28), but not by atriopeptin I [ANF(5-25)] or C-ANF [des-(18-22)-ANF(4-23)-NH2]. On the contrary, the 65-kDa ANF-binding fragment generated after incubation at pH 4.0 was protected from labeling by any of the above peptides, indicating broader binding specificity. After incubation in the presence of EDTA, the 130-kDa ANF receptor, which was protected from proteolysis, retained binding specificity identical to that of the 130-kDa receptor in untreated membranes. The results indicate that the broadening of selectivity is caused by cleavage, but not by the physical effect of acidic pH. Spontaneous proteolysis of ANF receptor by an endogenous metalloendopeptidase, occurring with concomitant inactivation of guanylate cyclase activity and broadening of ligand-binding selectivity, may be responsible for the generation of low-molecular-mass receptors found in the adrenal gland and other target organs of ANF. The proteolytic process may play a role in desensitization or down-regulation of the ANF receptor.  相似文献   

3.
Tryptic digestion of the junctional sarcoplasmic reticulum membranes in sucrose but not NaCl buffer leads to complete loss of ryanodine binding capacity. The presence of MgCl2 in the sucrose buffer prevents the loss of ryanodine binding by the trypsin treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the treated membranes reveal that the 400-kDa protein band disappeared under all the different digestion conditions. However, the presence of 135-kDa tryptic fragment is observed only when ryanodine binding is retained. Quantitative analysis of the gels shows that the loss of ryanodine binding is well correlated with the cleavage of the 135-kDa tryptic fragment. This correlation is obtained when the cleavage was controlled either by the digestion time or by NaCl or MgCl2 concentrations. The same concentrations of MgCl2 and NaCl affect the ryanodine binding activity, the cleavage of the 135-kDa tryptic fragment, and the solubility and stability of the [3H]ryanodine-receptor complex in a detergent-containing medium. Tryptic digestion of the ryanodine receptor/junctional Ca2+ release channel, which leads to complete loss of ryanodine binding capacity, has no effect or slightly stimulates the Ca2+ accumulation activity of these membranes.  相似文献   

4.
Incubation of the adrenal membranes at pH 3.5-5.6 resulted in apparent proteolysis of 140 kDa protein to yield a 70 kDa polypeptide containing an ANF-binding site, which could be photoaffinity labeled by [125I]4-azidobenzoyl monoiodo ANF-(4-28). This 70 kDa fragment was found to be disulfide-linked to the remaining segment(s) of the molecule, giving a total apparent Mr of 140,000 when not reduced. The acidic pH-dependent proteolysis was rapid even at 0 degree C, suggesting close association of an endopeptidase with ANF receptor. The proteolysis was inhibited by EDTA, but not by phenylmethanesulfonyl fluoride, N-ethylmaleimide or pepstatin, indicating that the enzyme is a metalloendopeptidase. The inhibition was reversed by ZnCl2 or MnCl2, but not CaCl2 or MgCl2. The adrenal membranes contained guanylate cyclase activity of 1.1 nmol/min/mg protein using Mn-GTP as a substrate, which could be stimulated by 0.1 microM ANF to 2.7 nmol/min/mg. The membranes showed high affinity to ANF-(1-28) and ANF-(4-28), but little affinity to the truncated peptides ANF-(5-25) and ANF-(7-23). After treatment at pH 3.5 and 0 degrees C for 15 min, the membranes retained ANF-binding activity but with broader specificity, exhibiting high affinity to all four peptides above. It was suggested that an acidic metalloendopeptidase in the adrenal membranes may be involved in ANF receptor cleavage.  相似文献   

5.
We have characterized proteolytic fragments of the chick intestinal 1,25-dihyroxyvitamin D3 (1,25-(OH)2D3) receptor, produced through either exogenous or endogenous protease action, utilizing a variety of physical and functional assays coupled to immunoblot detection methodology. Treatment of intestinal cytosol with increasing concentrations of trypsin resulted in a progressive diminishment of the 60-kDa receptor concomitant with the appearance of a 20-kDa fragment reactive by Western blot analysis to an anti-1,25-(OH)2D3 receptor monoclonal antibody. Cleveland analysis supported the receptor-origin of this 20-kDa fragment: a common immunoreactive species of 12 kDa could be generated by Staphylococcus aureus V8 protease treatment of the intact 60-kDa receptor as well as the 20-kDa proteolytic product. The 20-kDa fragment did not bind hormone but was capable of interacting with DNA-cellulose in a fashion identical to that of the 60-kDa receptor and, therefore, may contain the functional DNA-binding domain of the chick 1,25-(OH)2D3 receptor. Thus, this fragment likely represents the complement of a larger hormone-bound fragment that we have previously described (Allegretto, E. A., and Pike, J.W. (1985) J. Biol. Chem. 260, 10139-10145). In contrast to the exogenous effect of trypsin, incubation of cytosol resulted in the time-dependent formation of an endogenous protease-derived fragment of 45 kDa. Cleveland analysis was consistent with the 60-kDa receptor derivation of the 45-kDa fragment. This species retained the hormone-binding site and the antibody determinant but was devoid of DNA-binding activity. Moreover, it generated neither the trypsin-dependent 20-kDa fragment nor the V8 protease-dependent 12-kDa species and, therefore, was derived from the opposite end of the receptor molecule. These data have facilitated the construction of a schematic model of the chick receptor in which the immunoreactive epitope is located between the functional domains for hormone binding and DNA binding.  相似文献   

6.
The steroid binding domain of the rat glucocorticoid receptor is considered as extending from amino acids 550 to 795. However, such a synthetic protein (i.e. amino acids 547-795; Mr approximately 31,000) has been reported to show very little affinity for the potent synthetic glucocorticoid dexamethasone. We now disclose that digestion of steroid-free rat glucocorticoid receptors with low concentrations of trypsin yields a single species, of Mr = 16,000, that is specifically labeled by dexamethasone 21-mesylate. This 16-kDa fragment retains high affinity binding for [3H]dexamethasone that is only approximately 23-fold lower than that seen with the intact 98-kDa receptor. Analysis of the protease digestion patterns obtained both with trypsin and with lysylendopeptidase C allowed us to deduce the proteolytic cleavage maps of the receptor with these enzymes. From these protease maps, the sequence of the 16-kDa fragment was identified as being threonine 537 to arginine 673. These results show that glucocorticoid receptor fragments smaller than 34 kDa do bind steroids and that the amino acids Thr537-Arg673 constitute a core sequence for ligand binding within the larger steroid binding domain. The much slower kinetics in generating the 16-kDa fragment from affinity-labeled receptors suggests that steroid binding causes a conformation change in the receptor near the cleavage sites.  相似文献   

7.
Docking protein is a 73-kDa integral membrane protein of the rough endoplasmic reticulum. It is essential for translocation of nascent secretory proteins into the lumen of the endoplasmic reticulum. Monoclonal and polyclonal antibodies have been generated which, in conjunction with limited proteolysis, have been used to characterize several subspecies of docking protein. These proteolytic fragments have been analyzed with respect to the various functions ascribed to docking protein which can be assayed in vitro. Proteolytic digestion of membrane-associated or of affinity-purified intact docking protein showed that: elastase cleavage generates a 59-kDa soluble fragment and one of 14 kDa which contains the membrane anchoring domain; trypsin as well as endogenous proteolysis generates a 46-kDa fragment, leaving a 27-kDa domain containing the membrane anchor. This 27-kDa fragment can be reduced to a 13- and a 14-kDa piece by elastase digestion. The characteristics of these various subspecies were examined. The 59-kDa soluble fragment, which can reconstitute full translocation activity to docking protein-depleted microsomes (Meyer, D. I., and Dobberstein, B. (1980) J. Cell Biol. 87, 503-508) was capable of releasing a signal recognition particle-mediated translation arrest. The 46-kDa fragment was neither able to reassociate with nor to reconstitute the activity of docking protein-depleted microsomes. Moreover this fragment was unable to release a signal recognition particle-mediated arrest. This suggests that the 13-kDa fragment (the difference between 46 and 59 kDa) is both essential for association with the membrane, and for the release of translation arrests.  相似文献   

8.
The amphibian photoreceptor rod outer segment contains a guanine nucleotide-binding complex which consists of a 39,000-dalton polypeptide that binds guanine nucleotides (G protein), a 36,000-dalton polypeptide (H protein), and an approximately 6,500-dalton polypeptide. Sensitivity to trypsin proteolysis was utilized as a probe of structure-function relationships for these polypeptides. Digestion of the H protein generated fragments of 26,000 and 15,000 daltons whose proteolytic susceptibility was not altered by guanosine triphosphates, light, or membranes. The approximately 6,500-dalton polypeptide was not trypsin sensitive. When the G protein was eluted from illuminated membranes by GTP, trypsin proteolysis cleaved a terminal 1,000-dalton fragment (G1) to yield a 38,000-dalton fragment (G38). With increased digestion time, a 6,000-dalton fragment (G6) was removed from G38 to yield a 32,000-dalton fragment (G32). G32 was subsequently digested to fragments of 23,000 and 12,000 daltons. However, when the G protein was eluted from illuminated membranes by hydrolysis-resistant analogues of GTP, G32 was protected from further digestion. This is consistent with a GTP-induced conformational change in the G protein which is altered by GTP hydrolysis. Proteolysis of the G protein after covalent labeling with a photoaffinity analogue of GTP demonstrated that the analogue is bound to first G38 and then G32, indicating the GTP-binding site is associated with G32. Fragment G6 was cleaved when the G protein was soluble or bound to unilluminated membranes. However, when bound to illuminated membranes, fragments were generated reflecting the loss of 7,500, 9,000, or 11,000 daltons from the G protein. This light-induced alteration in proteolytic susceptibility indicates there is a light-induced conformational change in the G protein. Fragment G1 was not removed from the G protein when it was membrane bound, suggesting G1 is involved in binding to a membrane structure. These data suggest that the light-induced binding of the G protein to illuminated membranes and the reversal of this binding by GTP are mediated through conformational changes in the G protein and that three conformations exist: 1) a basal, inactive conformation; 2) a primed conformation induced by binding to photolyzed rhodopsin, with a high affinity for GTP; and 3) an active conformation, induced by binding of GTP, which activates the catalytic complex of light-activated phosphodiesterase.  相似文献   

9.
Nucleotide-induced conformational changes of the 70-kDa peroxisomal membrane protein (PMP70) were investigated by means of limited-trypsin digestion. Rat liver peroxisomes preincubated with various nucleotides were subsequently digested by trypsin. The digestion products were subjected to immunoblot analysis with an anti-PMP70 antibody that recognizes the carboxyl-terminal 15 amino acids of the protein. PMP70 was initially cleaved in the boundary region between the transmembrane and nucleotide-binding domains and a carboxyl-terminal 30-kDa fragment resulted. The fragment in turn was progressively digested at the helical domain between the Walker A and B motifs. The fragment, however, could be stabilized with MgATP or MgADP. In contrast to MgATP, MgATP-gammaS protected whole PMP70 as well as the fragment. The 30-kDa fragment processed by trypsin was recovered in the post-peroxisomal fraction as a complex with a molecular mass of about 60 kDa irrespective of the presence of MgATP. These results suggest that PMP70 exists as a dimer on the peroxisomal membranes and the binding and hydrolysis of ATP induce conformational changes in PMP70 close to the boundary between the transmembrane and nucleotide binding domains and the helical domain between the Walker A and B motifs.  相似文献   

10.
H J Goren  M F White  C R Kahn 《Biochemistry》1987,26(8):2374-2382
We have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the beta-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22 degrees C with low concentrations (5-10 micrograms/mL, pH 7.4) of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the beta-subunit was carried out before and after digestion, and the [32P]phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. Mild trypsin digestion reduced the apparent molecular mass of the beta-subunit from 95 to 85 kDa, and then to 70 kDa. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the beta-subunit (alpha Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the [32P]phosphate originally found in the beta-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. Treatment of the intact receptor with staphylococcal V8 protease also converted the beta-subunit to an 85-kDa fragment that did not bind to alpha Pep-1, contained about 50% of the initial radioactivity, and lacked pY2 and pY3. Elastase rapidly degraded the receptor to inactive fragments between 37 and 50 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The potent diuretic and natriuretic peptide hormone atrial natriuretic factor (ANF), with vasodilatory activity also stimulates steroidogenic responsiveness in Leydig cells. The actions of ANF are mediated by its interaction with specific cell surface receptors and the membrane-bound form of guanylate cyclase represents an atrial natriuretic factor receptor (ANF-R). To understand the mechanism of ANF action in testicular steroidogenesis and to identify guanylate cyclase/ANF-R that is expressed in the Leydig cells, the primary structure of murine guanylate cyclase/ANF-R has been deduced from its cDNA sequence. A cDNA library constructed from poly(A+) RNA of murine Leydig tumor (MA-10) cell line was screened for the membrane-bound form of ANF-R/guanylate cyclase sequences by hybridization with a rat brain guanylate cyclase/ANF-R cDNA probe. The amino acid sequence deduced from the cDNA shows that murine guanylate cyclase/ANF-R cDNA consists of 1057 amino acids with 21 amino acids comprising the transmembrane domain which separates an extracellular ligand-binding domain (469 amino acid residues) and an intracellular guanylate cyclase domain (567 amino acid residues). Upon transfection of the murine guanylate cyclase/ANF-R cDNA in COS-7 cells, the expressed protein showed specific binding to 125I-ANF, stimulation of guanylate cyclase activity and production of intracellular cGMP in response to ANF. The expression of guanylate cyclase/ANF-R cDNA transfected in rat Leydig tumor cells stimulated the production of testosterone and intracellular cGMP after treatment with ANF. The results presented herein directly show that ANF can regulate the testicular steroidogenic responsiveness in addition to its known regulatory role in the control of cardiovascular homeostasis.  相似文献   

12.
We analyzed the high affinity receptor for IFN-gamma of Raji cells and human placenta by combining Scatchard analysis, cross-linking experiments, and receptor purification. Only one high affinity binding site was found, Kd 2.1 X 10(-10). The receptor is a 90-kDa glycoprotein. However, multiple cross-linked products of 110 kDa to about 250 kDa could be generated and proteins of 90, 70, and 50 kDa could be obtained upon purification. These proteins all contained the same 90-kDa receptor, or part of it. We suggest that extensive cross-linking and/or proteolysis may explain many of the conflicting results published thus far. The extracellular domain of the 90-kDa receptor protein was highly resistant to digestion with trypsin or proteinase K. Trypsin digestion neither affected the number of binding sites per cell, nor the Kd for IFN-gamma. A cluster of sites for different proteases was found in the intracellular domain. The 50-kDa fragment created by trypsin digestion had the same characteristics as the isolated 50-kDa receptor fragment. It contained the IFN-gamma binding site and the receptor's extracellular and amino-terminal domain. N-linked glycosylation contributed about 15 kDa to its molecular mass, of which 4 kDa were attributable to sialic acid residues. O-Linked glycosylation was not detected. The number of binding sites per cell and the Kd for IFN-gamma were not affected by the presence or absence of N-linked glycosylation. The receptor contained at least one critical disulfide bridge and the reduced receptor could be reactivated in vitro.  相似文献   

13.
Trypsin exerts insulin-like effects in intact cells and on partially purified preparations of insulin receptors. To elucidate the mechanism of these insulinomimetic effects, we compared the structures of insulin- and trypsin-activated receptor species with their functions, including insulin binding, autophosphorylation, and tyrosine kinase activity. In vitro treatment of wheat germ agglutinin-purified receptor preparations with trypsin resulted in proteolysis of both alpha- and beta-subunits. The activated form of the receptor had an apparent molecular mass of 110 kDa under nonreducing conditions, compared to the 400-kDa intact receptor, and was separated following reduction into an 85-kDa beta-subunit related fragment and a 25-kDa alpha-subunit related fragment. Treatment of whole cells with trypsin prior to isolation of the insulin receptor resulted in proteolytic modification of the alpha-subunit only. In this case, the total molecular mass of the activated species was 116 kDa, comprised of an intact 92-kDa beta-subunit and again a 25-kDa alpha-subunit related fragment. Values of Km for peptide substrate phosphorylation and Ki for inhibition of receptor autophosphorylation, and sites of autophosphorylation within the beta-subunits were similar for receptors activated either by insulin or trypsin. Insulin had no additional effect on the rate of autophosphorylation of the truncated receptor, and no binding of insulin by the truncated receptor was detected either by direct assay or cross-linking with bifunctional reagents. Based on the deduced amino acid sequence of the insulin receptor and the structural studies presented here we concluded that this activated form of the receptor resulted from tryptic cleavage at the dibasic site Arg576-Arg577. This was accompanied by loss of the insulin binding site and separation of alpha-beta heterodimers. As truncation of the alpha-subunit results in beta-subunit activation, it appears that the beta-subunit is a constitutively activated kinase and that the function of the alpha-subunit in the intact receptor is to inhibit the beta-subunit.  相似文献   

14.
A high-efficiency photoaffinity derivative of atrial natriuretic factor (ANF) was developed for studying the peptide binding domain of the receptor protein and for better characterization of this receptor in tissues with a low density of binding sites. The position of the photosensitive residue was chosen on the basis of a molecular conformational model and on structure-activity relationship studies which both indicate that the carboxy-terminal end of the peptide is part of a hydrophobic pole likely to interact deeply within the ANF binding pocket of the receptor. Selection of the photoreactive residue p-benzoylphenylalanine (BPA) as a substitute for arginine in position 125 of the peptide sequence led to a photoaffinity derivative with a high (63%) efficiency of covalent incorporation to the receptor protein. This derivative (BPA-ANF) has a 10-fold lower affinity when compared with ANF, but it is a full agonist in stimulating cGMP production and inhibiting aldosterone secretion in bovine adrenal zona glomerulosa. Photoaffinity labeling with BPA-ANF specifically identifies ANF-R1 and ANF-R2 receptor proteins with a 10-fold higher efficiency than with azido derivatives of ANF or with cross-linking agents. This new ANF derivative therefore appears to be useful for studying ANF receptors in tissues with low levels of expression, for locating receptor following cellular internalization, and for tagging proteolytic fragments of the receptor amenable to amino acid microsequencing.  相似文献   

15.
The topography and functional domains of the cAMP chemotactic receptor of Dictyostelium discoideum were investigated by protease sensitivity to chymotrypsin. Proteolytic digestion of intact cells produced a 23-kDa fragment of the receptor that retained the photoaffinity label used to identify the receptor. Additionally, this fragment contained the sites phosphorylated by CAR-kinase, the enzyme that phosphorylates the ligand-occupied form of the receptor. The fragment was also found to be phosphorylated in response to cAMP stimulation of cells. Proteolytic digestion of either intact cells or membrane preparations did not appreciably alter the binding properties of the receptor, indicating that the domains which determine the cAMP binding pocket are likely to be transmembrane regions of the protein. Additionally, the sensitivity of down-regulated receptors to chymotrypsin digestion suggests that the initial loss of cAMP binding activity upon incubation of cells with high concentrations of ligand does not require receptor internalization.  相似文献   

16.
The structural organization of the oxysterol receptor, postulated to be involved in the regulation of 3-hydroxy-3-methylglutaryl CoA reductase and cholesterol biosynthesis in mammalian cells, has been explored by limited proteolysis with trypsin, alpha-chymotrypsin, and endoproteinase GluC. Treatment with each of these proteases converts the receptor from a homodimer of approximately 95 kDa subunits to a 44-kDa form, based on hydrodynamic measurements by sucrose density gradient centrifugation and gel filtration chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of photoaffinity-labeled preparations indicates that the oxysterol binding site is on a 28-kDa fragment within the 44-kDa limit form of the receptor. The limit proteolytic form exhibits the high affinity and structural specificity for oxysterols of the native dimeric receptor with an increase in the rate constant of association for 25-hydroxycholesterol. The proteolytic form also shows an increased binding affinity for nonspecific DNA, but no sequence specificity for the oxysterol regulatory element from the reductase gene was detected.  相似文献   

17.
Nucleolin, also called protein C23, is a RNA-associated protein implicated in the early stages of ribosome assembly. To study the general conformation and map the nucleic acid binding regions, rat nucleolin was subjected to limited proteolysis using trypsin and chymotrypsin in the presence or absence of poly(G). The cleavage sites were classified according to their locations in the three putative domains: the highly polar amino-terminal domain, the central nucleic acid binding domain, which contains four 90-residue repeats, and the carboxyl-terminal domain, which is rich is glycine, dimethylarginine, and phenylalanine. The most labile sites were found in basic segments of the amino-terminal domain. This region was stabilized by Mg2+. At low enzyme concentrations, cleavage by trypsin or chymotrypsin in the amino-terminal domain was enhanced by poly(G). Trypsin produced a relatively stable 48-kDa fragment containing the central and carboxyl-terminal domains. The enhanced cleavage suggests that binding of nucleic acid by the central domain alters the conformation of the amino-terminal domain, exposing sites to proteolytic cleavage. At moderate enzyme concentrations, the 48-kDa fragment was protected by poly(G) against tryptic digestion. At the highest enzyme concentrations, both enzymes cleaved near the boundaries between repeats 2, 3, and 4 with some sites protected by poly(G), suggesting that the repeats themselves form compact units. The carboxyl-terminal domain was resistant to trypsin but was cleaved by chymotrypsin either in the presence or in the absence of poly(G), indicating exposure of some phenylalanines in this region. These studies provide a general picture of the topology of nucleolin and suggest that the nucleic acid binding region communicates with the amino-terminal domain.  相似文献   

18.
GP-2 is the major membrane glycoprotein characteristic of the pancreatic zymogen granule membrane. When granules are lysed in the presence of DTT, GP-2 becomes completely and specifically degraded. This proteolysis was reproducible with the same characteristics in the purified granule membrane. The protease was purified from this source using hydrophobic interaction chromatography. The proteolytic activity was identified as a 29-kDa protein because, in a reconstituted system containing both the purified GP-2 and the 29-kDa protein, the proteolytic degradation of GP-2 was sensitive to the same spectrum and concentrations of inhibitors or reducing agents as in the membrane. The activity was characteristic of a serine protease. It was also shown that GP-2 only becomes sensitive to proteolytic digestion when its disulfide bonds are reduced, and that DTT does not activate the protease. Seven intramolecular disulfide bonds were identified on GP-2. All of them are located in a 65-kDa tryptic fragment that is very resistant to exogenous proteases under nonreducing conditions. Because of the quite specific degradation of GP-2 under reducing conditions, we believe that the 29-kDa protease must be closely associated with GP-2 on the membrane. This protease could be responsible, in part, for the solubilization of the GP-2 from the membrane into the zymogen granule content and its resulting secretion by the pancreas.  相似文献   

19.
Treatment of prostaglandin H (PGH) synthase (70 kDa) with trypsin generates fragments of 33 and 38 kDa. Each of the fragments was purified by reverse-phase high performance liquid chromatography (HPLC) using acetonitrile/water/trifluoroacetic acid gradients. Amino acid sequence analysis indicates that the 33-kDa protein contains the NH2 terminus of PGH synthase. Neither the 33- nor 38-kDa fragment isolated by HPLC exhibits any PGH synthase activity; however, cleavage of intact enzyme to 33- and 38-kDa fragments to the extent of 90% only reduces cyclooxygenase activity by 40%. This implies that the cleaved proteins or a complex formed between them retains the conformation necessary for enzyme activity. Extensive attempts to resolve active fragments from each other or from intact enzyme were unsuccessful; intact enzyme and digestion fragments cochromatograph under all conditions employed. Treatment of PGH synthase with [3H]acetylsalicylic acid followed by trypsin digestion introduces [3H]acetyl moieties into the intact protein and the 38-kDa fragment (0.8-0.9 acetyl group/subunit). Nearly complete conversion of PGH synthase to 33- and 38-kDa fragments by exposure to high concentrations of trypsin prior to [3H]acetylsalicylic acid treatment results in labeling of the 38-kDa fragment, but not the 33-kDa fragment. The present findings are consistent with the presence of a membrane-binding domain (33 kDa) and an active site domain (38 kDa) in the 70-kDa subunit of PGH synthase. They also suggest that, following cleavage, the 38-kDa fragment retains the structural features responsible for the cyclooxygenase activity and selective aspirin labeling of PGH synthase. PGH synthase undergoes self-catalyzed inactivation by oxidants generated during its catalytic turnover. When PGH synthase, inactivated by treatment with arachidonic acid or hydrogen peroxide, was treated with trypsin it was cleaved two to three times faster than unoxidized enzyme. Addition of heme to oxidized PGH synthase did not reconstitute cyclooxygenase activity or resistance to trypsin cleavage. Spectrophotometric studies demonstrated that oxidatively inactivated enzyme did not bind heme. This implies that oxidation of protein residues as well as the heme prosthetic group is an important determinant of proteolytic sensitivity. Oxidative modification may mark PGH synthase for proteolytic cleavage and turnover.  相似文献   

20.
125I-Insulin binding to rat liver plasma membranes initiated two processes that occurred with similar time courses: an increase of receptor affinity for hormone and degradation of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000. Inhibitors of serine proteinases prevented alpha subunit degradation without affecting the affinity change. This shows that the change of affinity is not produced by receptor proteolysis and that the intact alpha subunit of the insulin receptor can exist as a higher or lower affinity species. Hormone binding was much more rapid than receptor proteolysis and the initial rate of alpha subunit degradation was independent of the concentration of occupied lower affinity receptors. Only persistent hormone binding and the accumulation of higher affinity insulin-receptor complexes led to significant receptor proteolysis. As the incubation time between 125I-insulin and membranes increased, the rate at which hormone dissociated from Mr 135,000 complexes diminished, whereas hormone dissociated from Mr 120,000 complexes slowly after brief or extended incubations. These observations suggest that 125I-insulin binds to membranes to form low affinity complexes that are not substrates for proteolysis. A slow conformational change produces higher affinity hormone-receptor complexes that are selectively degraded. Thus, the conversion between states of affinity may play a role in the regulation of receptor proteolysis and, consequently, insulin action in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号