首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a model compound for the growing chain in the activated-NCA type of polymerization of α-amino acid N-carboxyanhydride (NCA), 3-[ω-acetylglycyl-poly(α-amino acid) acyl]-α-amino acid NCA (called the prepolymer) having various degrees of polymerization (DPs) was synthesized by the polymerization of Phe, Val, Glu(OEt), and Asp(OBzl) NCA in the presence of AcGly NCA by the tertiary amine. Activated (S)-Phe, Val, Glu(OEt), and Asp(OBzl) NCA were added to the terminal cyclic group of the corresponding (S)- or (R)- prepolymer, and the enantiomer selectivity in the reaction was investigated. With prepolymers having DPs ranging from 1 to 15, the addition reaction always took place preferentially between species having the same configuration, and the degree of the enantiomer selection increased with increasing DP of the prepolymer. With prepolymers having DP = 1 and 2, we found contributions from the chiral terminal unit and the chiral penultimate unit to the enantiomer selection, respectively. Prepolymer having DP = 5 was shown to take a β-type conformation, which led to higher enantiomer selection; and prepolymers having DP = 10 and 15 were shown to take an α-helix conformation, which led to much higher enantiomer selection than did the β-type conformation. In the present investigation the mechanisms of terminal-unit control, penultimate-unit control and conformational control of the enantiomer selection in the activated-NCA type of polymerization were clearly observed.  相似文献   

2.
In order to investigate the contribution from the chiral penultimate unit to the enantiomer selection in the activated N-carboxyanhydride (NCA) polymerizations, the addition reaction to N-[(S)-methylbenzyl]glycine NCA of various α-amino acid hydantoins activated by the tertiary amines was investigated in different solvents. The reactions of activated Ala, Val, and Phe hydantoins were stereoselective and suggested the participation of the penultimate unit in the enantiomer selection of the activated NCA type of polymerization. The degree of enantiomer selection was not well correlated with the structure of hydantoins. Taking into account the dipole repulsion and the orbital overlapping between the reaction species, the transition-state model was proposed, which gave a good explanation of the selectivity for (R)-hydantoin in PhNO2 and CH3CN and the selectivity for (S)-hydantoin in AcNMe2 and HCONMe2. In these two types of solvents the orientation of the methylbenzyl group with respect to the NCA ring is so different that the direction of the approach of the activated hydantoin to the NCA is different. This difference leads to the inversion of enantiomer selection in amide solvents and in others. Cationic species derived from tertiary amines and the chiral amide compound were found to affect the enantiomer selection in the model reaction. The implications of these findings with regard to enantiomer selection in the activated NCA type of polymerization are discussed.  相似文献   

3.
In the Polymerization of phenylalanine N-carboxyanhydride (NCA) in No2Oh initiated by MeNHBzl, L -,D -, and DL -NCA As were polymerized at the same rate, and no stereoselectivity was observed. When the same experiment was carried out in HCONEt2, however, L - and D -NCA were both polymerized at a rate which was about twice as large as that of DL -NCA. In this case, the polymerization is stereoselective, ascribable to a preferable reaction between the optical enantiomorphs of the terminal residue of the growing chain and the NCA of the same chirality. On the other hand, the polymerization initiated by SarNMe2 and MeNH(CH2)2CONMe2 were stereoselective in NO2Ph and HCONEt2, but they were not stereoselective in m-(MeO)2Ph. These findings indicate that the polymerizations initiated by a strong base in highly dipolar solvents are stereoselective. Apparently, the reaction between a chiral, cyclic terminal of growing chain and a chiral, cyclic activated NCA in the activated-NCA mechanism is highly stereoselective. In addition, from a kinetic investigation on on the copolymerization between L - and D -NCAs, the penultimate chiral centers were also suggested to contribute to the stereoselection. Stereoselection by the α-helical conformation of the growing chain and by a chiral, linear terminal amine have been considered so far, and the contribution from the present type of stereoselection must have been overlooked.  相似文献   

4.
In the polymerizations of alanine, γ-ethyl glutamate, and leucine N-carboxyanhydrides (NCA's) initiated by tertiary amines and some secondary amines such as N-methyl-L -alanine dialkylamide, a stereoselectivity was observed: the polymerization rates of L - and D -NCA's were identical to each other and larger than that of DL -NCA. However, this selectivity was not observed in the polymerizations of valine and isoleucine NCA's initiated by N-methyl-L -alanine dialkylamide. The stereoselective polymerizations of valine and isoleucine NCA's were induced only with tetriary amines such as tri-n-butylamine. N-Methyl-L -alanine di-alkylamide has been shown to initiate the polymerization of usual α-amino acid NCA according to the activated-NCA mechanism, but it initiated the polymerizations of valine and isoleucine NCA's according to the primary amine-type mechanism. This is because in the latter NCA's the N–H group is masked by the adjacent Cβ-branched alkyl substituent against the approach of the secondary amine. Poly(DL -alanine)s produced in the stereoselective polymerization had higher viscosities and were more stereoblock-like than those produced without the stereoselectivity. These experimental results indicate that the stereoselective polymerization is possible only when the polymerization proceeds through the activated-NCA mechanism.  相似文献   

5.
The polymerization of DL -β-phenylalanine N-carboxyanhydride (NCA) initiated by poly(N-benzylglycine)diethylamide (DEA) and poly(N-methyl-DL -alanine)DEA has been investigated. As previously reported, polysarcosine DEA, poly-N-ethylglycine DEA, and poly-N-n-propylglycine DEA showed marked accelerations in the polymerization of DL -β-phenylalanine NCA as compared with the polymerization initiated by low molecular weight, amines having similar base strength. However, this phenomenon (the chain effect) was not observed with the two polymer catalysts studied in the present investigation With poly-N-methyl-DL -alanine DEA, adsorption of DL -β-phenylalanine NCA onto the polymer chain takes place, though not so effectively as with other polypeptides, so the absence of chain effect was ascribed to a reduced flexibility of the polymer chain. With poly(N-benzylglycine)DEA, the reactivity of terminal base group was found to be much lower than that of other polymer catalysts. However, the absence of the chain effect would be attributed to the rigidity of polymer chain of poly-N-benzylglycine DEA due to the bulkiness of the N-benzyl group.  相似文献   

6.
Polymerizations of L - and DL -phenylalanine N-carboxyanhydride in nitrobenzene by poly (N-methyl-L -alanine) of varying degrees of polymerization (n = 1–30) were investigated. Poly(N-methyl-L -alanine) was prepared by the polymerization of N-methyl-L -alanine NCA with N-methyl-L -alanine diethylamide and the degree of polymerization was controlled by the molar ratio [NCA]/[Catalyst] + 1. This polymer was shown to be an asymmetrically selective catalyst which polymerized L -phenylalanine NCA at a faster rate than DL -phenylalanine NCA. With increasing degree of polymerization the stability of the secondary structure of poly(N-methyl-L -alanine) increased. This was confirmed by circular dichroism spectra. However, the degree of asymmetric selection did not increase as the stability of the secondary structure of poly(N-methyl-L -alanine) increased. These findings indicate that the interaction of a growing polypeptide in an ordered structure with NCA molecules prior to the reaction does not lead to an asymmetric selection, and that the mechanism of the asymmetric selection by poly(N-methyl-L -alanine) should be different from those proposed so far.  相似文献   

7.
In the polymerization of phenylalanine NCA initiated by some secondary amines, the two enatimorphs of phenylalanine NCA were polymerized with the same rate, which was almost twice as high, as that found for the racemic mixture. This stereoselectivity was observed only when the polymerization was initiated by secondary amines which are sterically crowded and reluctant to undergo a nucleophilic addition to NCA. Poly(DL -phenylalanine) produced in the stereoselective polymerization had a higher molecular weight than that produced in nonstereoselective polymerization. These findings point to the possibility that the stereoselectivity arises only in those polymerizations which are propagated by the activated monomers and not in the propagation involving the terminal amine of the growing polymer. A possible mechanism for the stereoselective polymerization is proposed and examined.  相似文献   

8.
In order to investigate the effect of the chiral penultimate unit on the stereoselection of α-amino acid N-carboxyanhydride (NCA) by the terminal unit of a growing chain in the nucleophilic addition-type polymerization, the diastereomers of dipeptide amines, H-(R)-Phe-(S)-Phe-Mo and H-(S)-Phe-(S)-Phe-Mo, in which Mo represents a morpholine residue, were synthesized, and the stereoselectivity in their nucleophilic addition reactions to NCA was investigated and compared with that of a monopeptide amine H-(S)-Phe-OEt. In the reaction with Phe NCA in nitrobenzene, either of the dipeptide amines reacted preferentially with an enantiomer of NCAs having a configuration opposite to the N-terminal unit of the dipeptide amine. The preference of enantiomeric NCA and the extent of stereoselectivity were nearly the same as those found with H-(S)-PheOEt. The opposite-enantiomer selectivity of the dipeptide amines was also observed in the reaction with N-MePhe NCA, and the extent of stereoselectivity was found to increase very much in the reaction of H-(R)-PHe-(S)-Phe-Mo compared with that of H-(S)-Phe-OEt. Therefore, the enhancement of the stereoselectivity of the N-terminal unit by the penultimate unit was shown experimentally. On the other hand, the stereoselectivity of H-(S)-Phe-(S)-Phe-Mo was not very different from that of H-(S)-Phe-OEt. These results were obtained either in nitrobenze or in m-dimethoxybenzene. H-(S)-Phe-(S)-Phe-OEt tends to aggregate by an intermolecular hydrogen bond in aqueous and tetrahydrofuran solutions. Its pKa value and nucleophilicity towards NCA were much lower than H-(R)-Phe-(S)-Phe-Mo, which was free from the aggregation under similar conditions. These experimental results suggest that the major product in the polymerization of (RS)-Phe NCA by amine should be an alternating copolymer. However, this prediction was not verified experimentally, and the important contributions from the aggregation and the molecular weight distribution of growing chains were suggested.  相似文献   

9.
The effect of solvent on stereoselectivity in the nucleophilic addition reaction of various optically active amines to N-methylphenylalanine N-carboxyanhydride has been investigated. In m-dimethoxybenzene as solvent, (S)-valine, (S)-leucine, and (S)-phenylalanine ethyl esters reacted preferentially with (R)-N-methylphenylalanine N-carboxyanhydride, but the stereoselectivity decreased considerably in nitrobenzene and dimethylacetamide as solvents. In the latter solvents, the dipolar interactions between an amine and an N-carboxyanhydride and the orientation of the substituent of N-carboxyanhydride were seriously affected, hence the stereoselectivity decreased. As a consequence, the enantiomer selection by the terminal amine of a growing chain in the nucleophilic addition-type polymerization of α-amino acid N-carboxyanhydride can be controlled by the choice of solvent. (S)-Proline ethyl ester and (S)-α-phenylethylamine reacted preferentially with (S)-N-methylphenylalanine N-carboxyanhydride in m-dimethoxybenzene, and this type of selectivity did not change in nitrobenzene. But in dimethylacetamide the stereoselectivity decreased. In the transition state of the reaction of these amines and N-methylphenylalanine N-carboxyanhydride dipolar interactions are operating, which should be destroyed by dimethylacetamide but may not be affected by nitrobenzene.  相似文献   

10.
Polymerizations of DL -phenylalanine NCA by block copolymers of sarcosine and DL -phenylalanine, designated by (Phe)m(Sar)n and capable of reaction at the phenylalanyl terminal, were investigated in nitrobenzene solution at 25°C. With increasing n for constant m (m = 0, 1, 2, and 5), the polymerization rate greatly increased. Previously the acceleration of the initiation reaction in the polymerization of DL -phenylalanine NCA by polysarcosine (m = 0) was reported. The present results showing the acceleration by the copolymers of sarcosine and DL -phenylalanine indicate the presence of the polymer effect in the propagation reaction as well. However, the polymer effect was most marked with polysarcosine (m = 0), and decreased with increasing m. The same polymerizations by sequential copolymers composed of ten sarcosine units and two DL -phenylalanine units were also investigated. Again with these copolymer catalysts the polymerization rate was larger than that by monomeric amines. But the polymer effect decreased sharply when the phenylalanine units take positions near the terminal amine group of the copolymer catalyst. These two deteriorating effects of the phenylalanine unit have been interpreted in terms of the decrease of the flexibility of polymer chain, caused possibly by an intramolecular hydrogen bond of the phenylalanine unit.  相似文献   

11.
In the polymerization of phenylalanine N-carboxyanhydride (NCA) using poly(N-methyl-L -or DL -alanine) diethylamide as initiator, the polymerization rate was L -NCA ? D -NCA > DL -NCA. This is a new type of selective polymerization and indicates the incompleteness of earlier investigations to study the asymmetrically selective polymerization without D -NCA. Neither secondary structure nor optical activity of the polymeric initiator is a reason for the selectivity. Hence the cause for the selectivity was sought in the properties of the NCA's in solution. However, the selectivity was not observed in the polymerization initiated by poly(L -phenylalanine) dimethylamide. The importance of the initiator being a secondary amine type was suggested. The experimental results are discussed on the basis of these considerations.  相似文献   

12.
N-protected peptides, which are important intermediates as a carboxyl component in the fragment condensation method, have been prepared in high yields by the reaction of o-nitrophenylsulfenyl (Nps) N-carboxy α-amino acid anhydrides with unprotected peptides and amino acids in aqueous organic systems. An Nps hexapeptide ester was prepared by the fragment condensation of an Nps tripeptide with a tripeptide ester. It was demonstrated that the synthesis of unprotected peptides by the NCA method, followed by N-protection by the Nps-NCA, is a rapid and very useful method for preparing Nps peptides.  相似文献   

13.
The polymerizations of D ,-L β-phenylalanine NCA, p–nitro-D ,L -β-phenylalanine NCA, and o,p-dinitro-D ,L -β-phenylalanine NCA were investigated, homopolymers and copolymers of N-vinyl-2-ethylimidazole or 2-Vinylpyridine being used as catalysts. When N-vinylpyrrolidone and N,N-diethylacrylamide, which are capable of forming hydrogen bonds with the NCA's, were used as comonomers with N-vinyl-2-ethylimidazole, the copolymer catalysts were found to bring about a faster polymerization than poly-N-vinyl-2-ethylimidazole. However, when styrene, which has no particular interaction with the NCA's, was used as a comonomer with 2-vinylpyridine, the copolymer catalyst was found to give a slower polymerization than poly-2-vinylpyridine. Electronic spectroscopy showed that the charge-transfer complex between copolymer catalysts and the NCA's plays an important role in the polymerization. The experimental results are discussed in terms of the effectiveness of the copolymer catalysts for forming hydrogen bonds or charge-transfer complexes with the NCA's.  相似文献   

14.
Polymerization of γ-ethyl DL -glutamate N-carboxy anhydride (NCA) in DMF has been carried out at various temperatures and with the use of tri-n-propylamine as the initiator. It was found that on decreasing the polymerization temperature the reaction rate is lowered but the molecular weight and the helix content of the final polymer are enhanced. An overall activation energy of ~4 kcal/mole has been found for the polymerization process. Preliminary experiments carried out on the polymerization of γ-benzyl D -glutamate NCA in DMF and with tri-n-propylamine as the initiator showed a strong depressing effect of the CO2 evolved during the polymerization, both on the reaction rate and on the molecular weight of the polymer. All data are interpreted in terms of the Bamford-Swarc mechanism.  相似文献   

15.
Tang CG  Lin H  Zhang C  Liu ZQ  Yang T  Wu ZL 《Biotechnology letters》2011,33(7):1435-1440
Whole cells of Rhodotorula glutinis reduced N-methyl-3-oxo-3-(thiophen-2-yl) propanamide at 30 g/l to (S)-N-methyl-3-hydroxy-3-(2-thienyl) propionamide, an intermediate in the production of (S)-duloxetine, a blockbuster antidepressant drug, in 48 h. The reaction had excellent enantioselectivity (single enantiomer, >99.5% enantiomeric excess [ee]) with a >95% conversion.  相似文献   

16.
Poly(methyl methacrylate) and polystyrene having terminal amino groups were synthesized by the radical polymerization of those monomers in the presence of 2-mercaptoethylammonium chloride as a chain-transfer agent. By the terminal group analysis and the molecular weight determination of the polymers, 0.5–1.3 amino groups were found in a chain of poly(methyl methacrylate) and 0.5–2.5 amino groups in a chain of polystyrene. Using these polymers having a terminal amino group as an initiator, the block polymerization of α-amino acid N-carboxyanhydride (NCA) was carried out. In the polymerizations of Glu(OBzl) NCA and Lys(Z) NCA by the poly(methyl methacrylate) initiator, the terminal amino group underwent a nucleophilic addition reaction to NCA and initiated the polymerization, yielding A-B-type block copolymers in a high yield. The same was observed in the polymerizations of Gly(OBzl) NCA and Lys(Z) NCA by the polystyrene initiator. By eliminating the protecting groups of the side chains of the polypeptide segment, the block copolymers poly(methyl methacrylate)-poly(Glu), poly(methyl methacrylate)-poly(Lys), polystyrene-poly(Glu) and polystyrene-poly(Lys) were synthesized with little side reactions. The side chain amino groups of poly(Lys) segment in the poly(methyl methacrylate)-poly(Lys) block copolymers were sulphonated or stearoylated successfully.  相似文献   

17.
Amino acid N-carboxyanhydrides (NCA), convenient monomer for polypeptide synthesis, are easily prepared in high purity as the result of N-carbamoyl amino acids (CAA) nitrosation by gaseous NOx (4:1 NO + O2 mixture, or NOCl) in toluene. Removal of polar side products is then efficiently carried out during subsequent work-up and crystallisation so that the resulting NCA obtained in good yield is suitable for controlled, primary amine-initiated polymerisation.  相似文献   

18.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
A novel enzyme, β-phenylalanine ester hydrolase, useful for chiral resolution of β-phenylalanine and for its β-peptide synthesis was characterized. The enzyme purified from the cell free-extract of Sphingobacterium sp. 238C5 well hydrolyzed β-phenylalanine esters (S)-stereospecifically. Besides β-phenylalanine esters, the enzyme catalyzed the hydrolysis of several α-amino acid esters with l-stereospecificity, while the deduced 369 amino acid sequence of the enzyme exhibited homology to alkaline d-stereospecific peptide hydrolases from Bacillus strains. Escherichia coli transformant expressing the β-phenylalanine ester hydrolase gene exhibited an about 8-fold increase in specific (S)-β-phenylalanine ethyl ester hydrolysis as compared with that of Sphingobacterium sp. 238C5. The E. coli transformant showed (S)-enantiomer specific esterase activity in the reaction with a low concentration (30 mM) of β-phenylalanine ethyl ester, while it showed both esterase and transpeptidase activity in the reaction with a high concentration (170 mM) of β-phenylalanine ethyl ester and produced β-phenylalanyl-β-phenylalanine ethyl ester. This transpeptidase activity was useful for β-phenylalanine β-peptide synthesis.  相似文献   

20.
The copolymerization of N-carboxy-L - and D -alanine anhydride with methanol as initiator was carried out. The enantiomer excess in the starting monomer mixture is preferentially incorporated into polymer chains, demonstrating asymmetric selection during the D - and L -copolymerization. The mechanism of asymmetric-selective polymerization of α-amino acid NCA is discussed in terms of the stereoregulation by molecular asymmetry of the growing polymer chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号