首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriocins, spite and virulence   总被引:4,自引:0,他引:4  
There has been much interest in using social evolution theory to predict the damage to a host from parasite infection, termed parasite virulence. Most of this work has focused on how high kinship between the parasites infecting a host can select for more prudent exploitation of the host, leading to a negative relationship between virulence and parasite kinship. However, it has also been shown that if parasites can cooperate to overcome the host, then high parasite kinship within hosts can select for greater cooperation and higher growth rates, hence leading to a positive relationship between virulence and parasite kinship. We examine the impact of a spiteful behaviour, chemical (bacteriocin) warfare between microbes, on the evolution of virulence, and find a new relationship: virulence is maximized when the frequency of kin among parasites' social partners is low or high, and is minimized at intermediate values. This emphasizes how biological details can fundamentally alter the qualitative nature of theoretical predictions made by models of parasite virulence.  相似文献   

2.
Host tolerance to infectious disease, whereby hosts do not directly “fight” parasites but instead ameliorate the damage caused, is an important defense mechanism in both plants and animals. Because tolerance to parasite virulence may lead to higher prevalence of disease in a population, evolutionary theory tells us that while the spread of resistance genes will result in negative frequency dependence and the potential for diversification, the evolution of tolerance is instead likely to result in fixation. However, our understanding of the broader implications of tolerance is limited by a lack of fully coevolutionary theory. Here we examine the coevolution of tolerance across a comprehensive range of classic coevolutionary host–parasite frameworks, including equivalents of gene‐for‐gene and matching allele and evolutionary invasion models. Our models show that the coevolution of host tolerance and parasite virulence does not lead to the generation and maintenance of diversity through either static polymorphisms or through “Red‐queen” cycles. Coevolution of tolerance may however lead to multiple stable states leading to sudden shifts in parasite impacts on host health. More broadly, we emphasize that tolerance may change host–parasite interactions from antagonistic to a form of “apparent commensalism,” but may also lead to the evolution of parasites that are highly virulent in nontolerant hosts.  相似文献   

3.
Is the virulence of parasites an outcome of optimized infection? Virulence has often been considered an inevitable consequence of parasite reproduction when the cost incurred by the parasite in reducing the fitness of its current host is offset by increased infection of new hosts. More recent models have focused on how competition occurring between parasites during co-infection might effect selection of virulence. For example, if co-infection was common, parasites with higher intrinsic growth rates might be selected, even at the expense of being optimally adapted to infect new hosts. If growth rate is positively correlated with virulence, then competition would select increased virulence. We tested these models using a plasmid-encoded virulence determinant. The virulence determinant did not contribute to the plasmid's reproduction within or between hosts. Despite this, virulent plasmids were more successful than avirulent derivatives during selection in an environment allowing within-host competition. To explain these findings we propose and test a model in which virulent parasites are selected by reducing the reproduction of competitors.  相似文献   

4.
Cooperation,virulence and siderophore production in bacterial parasites   总被引:6,自引:0,他引:6  
Kin selection theory predicts that the damage to a host resulting from parasite infection (parasite virulence) will be negatively correlated to the relatedness between parasites within the host. This occurs because a lower relatedness leads to greater competition for host resources, which favours rapid growth to achieve greater relative success within the host, and that higher parasite growth rate leads to higher virulence. We show that a biological feature of bacterial infections can lead to the opposite prediction: a positive correlation between relatedness and virulence. This occurs because a high relatedness can favour greater (cooperative) production of molecules that scavenge iron (siderophores), which results in higher growth rates and virulence. More generally, the same underlying idea can predict a positive relationship between relatedness and virulence in any case where parasites can cooperate to increase their growth rate; other examples include immune suppression and the production of biofilms to aid colonization.  相似文献   

5.
Models of virulence evolution for horizontally transmitted parasites often assume that transmission rate (the probability that an infected host infects a susceptible host) and virulence (the increase in host mortality due to infection) are positively correlated, because higher rates of production of propagules may cause more damages to the host. However, empirical support for this assumption is scant and limited to microparasites. To fill this gap, we explored the relationships between parasite life history and virulence in the salmon louse, Lepeophtheirus salmonis, a horizontally transmitted copepod ectoparasite on Atlantic salmon Salmo salar. In the laboratory, we infected juvenile salmon hosts with equal doses of infective L. salmonis larvae and monitored parasite age at first reproduction, parasite fecundity, area of damage caused on the skin of the host, and host weight and length gain. We found that earlier onset of parasite reproduction was associated with higher parasite fecundity. Moreover, higher parasite fecundity (a proxy for transmission rate, as infection probability increases with higher numbers of parasite larvae released to the water) was associated with lower host weight gain (correlated with lower survival in juvenile salmon), supporting the presence of a virulence–transmission trade‐off. Our results are relevant in the context of increasing intensive farming, where frequent anti‐parasite drug use and increased host density may have selected for faster production of parasite transmission stages, via earlier reproduction and increased early fecundity. Our study highlights that salmon lice, therefore, are a good model for studying how human activity may affect the evolution of parasite virulence.  相似文献   

6.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

7.
The evolution of parasite life histories should usually have correlated effects on host survivorship and/or reproductive success. For example, parasites that reproduce more rapidly might be expected to cause greater reductions in host fitness. Important theoretical advances have recently been made on virulence evolution, but the results are not always consistent. Here I compare two models [ Q. Rev. Biol. 71 (1996) 37 ; Q. Rev. Biol. 75 (2000) 261 ] on the evolution of virulence that get qualitatively different results with respect to the effects of coinfection. I also construct a third model that attempts to connect these two formulations. The results suggest that parasite growth rates should increase as local host competition increases, unless relatedness is at equilibrium. In addition, the qualitative effect of adding coinfections on parasite growth rates depends critically on how the number of coinfections affects transmission success.  相似文献   

8.
The disease caused by parasites and pathogens often causes sublethal effects that reduce host fecundity. Theory suggests that if parasites can "target" the detrimental effects of their growth on either host mortality or fecundity, they should always fully sterilize. This is because a reduction in host fecundity does not reduce the infectious period and is therefore neutral to a horizontally transmitted infectious organism. However, in nature fully castrating parasites are relatively rare, no doubt in part because of defense mechanisms in the host. Here, we examine in detail the evolution of host defense to the sterilizing effects of parasites and show that intermediate levels of sterility tolerance are found to evolve for a wide range of cost structures. Our key result arises when the host and parasite coevolve. Investment in tolerance by the host may prevent castration, but if host defense is through resistance (by controlling the parasite's growth rate) coevolution by the parasite results in the complete loss of infected host fecundity. Resistance is therefore a waste of resources, but tolerance can explain why parasites do not castrate their hosts. Our results further emphasize the importance of tolerance as opposed to resistance to parasites.  相似文献   

9.
The majority of organisms host multiple parasite species, each of which can interact with hosts and competitors through a diverse range of direct and indirect mechanisms. These within‐host interactions can directly alter the mortality rate of coinfected hosts and alter the evolution of virulence (parasite‐induced host mortality). Yet we still know little about how within‐host interactions affect the evolution of parasite virulence in multi‐parasite communities. Here, we modeled the virulence evolution of two coinfecting parasites in a host population in which parasites interacted through cross immunity, immune suppression, immunopathology, or spite. We show (1) that these within‐host interactions have different effects on virulence evolution when all parasites interact with each other in the same way versus when coinfecting parasites have unique interaction strategies, (2) that these interactions cause the evolution of lower virulence in some hosts, and higher virulence in other hosts, depending on the hosts infection status, and (3) that for cross immunity and spite, whether parasites increase or decrease the evolutionarily stable virulence in coinfected hosts depended on interaction strength. These results improve our understanding of virulence evolution in complex parasite communities, and show that virulence evolution must be understood at the community scale.  相似文献   

10.
It is predicted that host exploitation should evolve to maximize parasite fitness and that virulence (= parasite-induced host mortality) evolves along with the rate of host exploitation. If the life expectancy of a parasite is short, it is expected to evolve a higher rate of host exploitation and therefore higher virulence because the penalty to the parasite for killing the host is reduced. We tested this hypothesis by keeping for 14 months the horizontally transmitted microsporidian parasite Glugoides intestinalis in mono-clonal host cultures (Daphnia magna) under conditions of high and low host background mortality. High host mortality, and thus parasite mortality, was achieved by replacing weekly 70–80% of all hosts in a culture with uninfected hosts from stock cultures (Replacement lines). In the low-mortality treatment no replacement took place. Contrary to our expectation, parasites from the Replacement lines evolved a lower within-host growth rate and virulence than parasites from the Nonreplacement lines. Across lines we found a strong positive correlation between within-host growth rate and virulence. We did further experiments to answer the question why our data did not support the predictions. Sporophorous vesicles (SVs, spore clusters) were smaller in doubly infected than in singly infected host-gut cells, indicating that competition within cells bears costs for the parasite. Due to our experimental protocol, the average life span of infections had been much higher in the Nonreplacement lines. Since the number of parasites inside a host increases with the time since infection, long-lasting infections led to high frequencies of multiply infected host-gut cells. Therefore, we speculated that within-cell competition was more severe in the Nonreplacement lines and may have led to selection for accelerated within-host growth. SVs in the Nonreplacement lines were indeed significantly larger. Our results point out that single-factor explanations for the evolution of virulence can lead to wrong predictions and that multiple infections are an important factor in virulence evolution.  相似文献   

11.
Hosts counteract infections using two distinct defence strategies, resistance (reduction in pathogen fitness) and tolerance (limitation of infection damage). These strategies have been minimally investigated in multi-host systems, where they may vary across host species, entailing consequences both for hosts (virulence) and parasites (transmission). Comprehending the interplay among resistance, tolerance, virulence and parasite success is highly relevant for our understanding of the ecology and evolution of infectious and parasitic diseases. Our work investigated the interaction between an insect parasite and its most common bird host species, focusing on two relevant questions: (i) are defence strategies different between main and alternative hosts and, (ii) what are the consequences (virulence and parasite success) of different defence strategies? We conducted a matched field experiment and longitudinal studies at the host and the parasite levels under natural conditions, using a system comprising Philornis torquans flies and three bird hosts – the main host and two of the most frequently used alternative hosts. We found that main and alternative hosts have contrasting defence strategies, which gave rise in turn to contrasting virulence and parasite success. In the main bird host, minor loss of fitness, no detectable immune response, and high parasite success suggest a strategy of high tolerance and negligible resistance. Alternative hosts, on the contrary, resisted by mounting inflammatory responses, although with very different efficiency, which resulted in highly dissimilar parasite success and virulence. These results show clearly distinct defence strategies between main and alternative hosts in a natural multi-host system. They also highlight the importance of defence strategies in determining virulence and infection dynamics, and hint that defence efficiency is a crucial intervening element in these processes.  相似文献   

12.
Most evolutionary models treat virulence as an unavoidable consequence of microparasite replication and have predicted that in mixed-genotype infections, natural selection should favor higher levels of virulence than is optimal in genetically uniform infections. Increased virulence may evolve as a genetically fixed strategy, appropriate for the frequency of mixed infections in the population, or may occur as a conditional response to mixed infection, that is, a facultative strategy. Here we test whether facultative alterations in replication rates in the presence of competing genotypes occur and generate greater virulence. An important alternative, not currently incorporated in models of the evolution of virulence, is that host responses mounted against genetically diverse parasites may be more costly or less effective than those against genetically uniform parasites. If so, mixed clone infections will be more virulent for a given parasite replication rate. Two groups of mice were infected with one of two clones of Plasmodium chabaudi parasites, and three groups of mice were infected with 1:9, 5:5, or 9:1 mixtures of the same two clones. Virulence was assessed by monitoring mouse body weight and red blood cell density. Transmission stage densities were significantly higher in mixed- than in single-clone infections. Within treatment groups, transmission stage production increased with the virulence of the infection, a phenotypic correlation consistent with the genetic correlation assumed by much of the theoretical work on the evolution of virulence. Consistent with theoretical predictions of facultative alterations in virulence, we found that mice infected with both parasite clones lost more weight and had on average lower blood counts than those infected with single-clone infections. However, there was no consistent evidence of the mechanism invoked by evolutionary models that predict this effect. Replication rates and parasite densities were not always higher in ???mixed-clone infections, and for a given replication rate or parasite density, mixed-clone infections were still more virulent. Instead, prolonged anemia and increased transmission may have occured because genetically diverse infections are less rapidly cleared by hosts. Differences in maximum weight loss occured even when there were comparable parasite densities in mixed- and single-clone infections. We suggest that mounting an immune response against more that one parasite genotype is more costly for hosts, which therefore suffer higher virulence.  相似文献   

13.
Host resistance to parasites can come in two main forms: hosts may either reduce the probability of parasite infection (anti-infection resistance) or reduce parasite growth after infection has occurred (anti-growth resistance). Both resistance mechanisms are often imperfect, meaning that they do not fully prevent or clear infections. Theoretical work has suggested that imperfect anti-growth resistance can select for higher parasite virulence by favouring faster-growing and more virulent parasites that overcome this resistance. In contrast, imperfect anti-infection resistance is thought not to select for increased parasite virulence, because it is assumed that it reduces the number of hosts that become infected, but not the fitness of parasites in successfully infected hosts. Here, we develop a theoretical model to show that anti-infection resistance can in fact select for higher virulence when such resistance reduces the effective parasite dose that enters a host. Our model is based on a monarch butterfly-parasite system in which larval food plants confer resistance to the monarch host. We carried out an experiment and showed that this environmental resistance is most likely a form of anti-infection resistance, through which toxic food plants reduce the effective dose of parasites that initiates an infection. We used these results to build a mathematical model to investigate the evolutionary consequences of food plant-induced resistance. Our model shows that when the effective infectious dose is reduced, parasites can compensate by evolving a higher per-parasite growth rate, and consequently a higher intrinsic virulence. Our results are relevant to many insect host-parasite systems, in which larval food plants often confer imperfect anti-infection resistance. Our results also suggest that - for parasites where the infectious dose affects the within-host dynamics - vaccines that reduce the effective infectious dose can select for increased parasite virulence.  相似文献   

14.
In ecology, tolerance of parasites refers to host mitigation of the fitness costs of an infection. This concept of parasite tolerance contrasts with resistance, whereby hosts reduce the intensity of an infection. Anti-inflammatory cells and molecules have been implicated as mechanisms of parasite tolerance, suggesting that a major role of tolerance is in minimizing collateral damage associated with inflammation. A framework is proposed here in which the cost-benefit outcome of an inflammatory host-response is hypothesized to be dependent on host life-history, parasite virulence, and the efficacy of a current inflammatory or anti-inflammatory response. Testable predictions, both within and among host species, are presented for this hypothesis.  相似文献   

15.
Avian brood parasites lay their eggs in the nests of their hosts, which rear the parasite's progeny. The costs of parasitism have selected for the evolution of defence strategies in many host species. Most research has focused on resistance strategies, where hosts minimize the number of successful parasitism events using defences such as mobbing of adult brood parasites or rejection of parasite eggs. However, many hosts do not exhibit resistance. Here we explore why some hosts accept parasite eggs in their nests and how this is related to the virulence of the parasite. We also explore the extent to which acceptance of parasites can be explained by the evolution of tolerance; a strategy in which the host accepts the parasite but adjusts its life history or other traits to minimize the costs of parasitism. We review examples of tolerance in hosts of brood parasites (such as modifications to clutch size and multi‐broodedness), and utilize the literature on host–pathogen interactions and plant herbivory to analyse the prevalence of each type of defence (tolerance or resistance) and their evolution. We conclude that (i) the interactions between brood parasites and their hosts provide a highly tractable system for studying the evolution of tolerance, (ii) studies of host defences against brood parasites should investigate both resistance and tolerance, and (iii) tolerance and resistance can lead to contrasting evolutionary scenarios.  相似文献   

16.
Little TJ  Chadwick W  Watt K 《Parasitology》2008,135(3):303-308
Understanding genetic relationships amongst the life-history traits of parasites is crucial for testing hypotheses on the evolution of virulence. This study therefore examined variation between parasite isolates (the bacterium Pasteuria ramosa) from the crustacean Daphnia magna. From a single wild-caught infected host we obtained 2 P. ramosa isolates that differed substantially in the mortality they caused. Surprisingly, the isolate causing higher early mortality was, on average, less successful at establishing infections and had a slower growth rate within hosts. The observation that within-host replication rate was negatively correlated with mortality could violate a central assumption of the trade-off hypothesis for the evolution of virulence, but we discuss a number of caveats which caution against premature rejection of the trade-off hypothesis. We sought to test if the characteristics of these parasite isolates were constant across host genotypes in a second experiment that included 2 Daphnia host clones. The relative growth rates of the two parasite isolates did indeed depend on the host genotype (although the rank order did not change). We suggest that testing evolutionary hypotheses for virulence may require substantial sampling of both host and parasite genetic variation, and discuss how selection for virulence may change with the epidemiological state of natural populations and how this can promote genetic variation for virulence.  相似文献   

17.
D. P. Hughes  J. Kathirithamby 《Oikos》2005,110(3):428-434
An important factor modulating parasite virulence is the level of extrinsic mortality experienced by hosts. Where it is high, parasites are expected to grow or reproduce quickly to complete their lifecycle before their host is killed, whereas virulence is expected to be less under low extrinsic mortality, where growth/reproduction can be slower. A prominent example of a low mortality environment for parasites are immature social insects. Here we examined the cost of parasitism, i.e. virulence, experienced by larval and pupal stages of Polistes wasps following infection by endoparasitic Strepsiptera (under starvation conditions). We found that there was no difference in virulence between infected and uninfected individuals for the seven days following infection; either measured as host mortality or mass loss. Likewise, there was no observed cost of parasitism during the first seven days of the pupal stage of the host. Growth of the endoparasitic stages appeared the same between starved laboratory individuals and field caught samples. Strepsipteran parasites apparently enter a lag phase until the later stages of host pupal development, which we speculate reduces the negative impact of parasitism during the hosts' critical developmental stages. Our results highlight the need for further inquiry into the influence of sociality upon the evolution of parasite virulence.  相似文献   

18.
Evolution of virulence in a heterogeneous host population   总被引:1,自引:0,他引:1  
Abstract.— There is a large body of theoretical studies that investigate factors that affect the evolution of virulence, that is parasite-induced host mortality. In these studies the host population is assumed to be genetically homogeneous. However, many parasites have a broad range of host types they infect, and trade-offs between the parasite virulence in different host types may exist. The aim of this paper is to study the effect of host heterogeneity on the evolution of parasite virulence. By analyzing a simple model that describes the replication of different parasite strains in a population of two different host types, we determine the optimal level of virulence in both host types and find the conditions under which strains that specialize in one host type dominate the parasite population. Furthermore, we show that intrahost evolution of the parasite during an infection may lead to stable polymorphisms and could introduce evolutionary branching in the parasite population.  相似文献   

19.
By definition, parasites harm their hosts, but in many infections much of the pathology is driven by the host immune response rather than through direct damage inflicted by parasites. While these immunopathological effects are often well studied and understood mechanistically in individual disease interactions, there remains relatively little understanding of their broader impact on the evolution of parasites and their hosts. Here, we theoretically investigate the implications of immunopathology, broadly defined as additional mortality associated with the host's immune response, on parasite evolution. In particular, we examine how immunopathology acting on different epidemiological traits (namely transmission, virulence and recovery) affects the evolution of disease severity. When immunopathology is costly to parasites, such that it reduces their fitness, for example by decreasing transmission, there is always selection for increased disease severity. However, we highlight a number of host-parasite interactions where the parasite may benefit from immunopathology, and highlight scenarios that may lead to the evolution of slower growing parasites and potentially reduced disease severity. Importantly, we find that conclusions on disease severity are highly dependent on how severity is measured. Finally, we discuss the effect of treatments used to combat disease symptoms caused by immunopathology.  相似文献   

20.
Within-host competition between parasite genotypes can play an important role in the evolution of parasite virulence. For example, competition can increase virulence by imposing selection for parasites that replicate at a faster absolute rate within the host, but may also decrease virulence by selecting for faster relative growth rates through social exploitation of conspecifics. For many parasites, both outcomes are possible. We investigated how competition affected the evolution of virulence of the opportunistic pathogen Pseudomonas aeruginosa in caterpillar hosts, over the course of an approximately 60 generation selection experiment. We initiated infections with clonal populations of either wild-type bacteria or an isogenic mutant with an approximately 100-fold higher mutation rate, resulting in low and high between-genotype competition, respectively. We observed the evolution of increased virulence, growth rate, and public goods cheating (exploitation of extracellular iron scavenging siderophores produced by ancestral populations) in mutator but not wild-type, populations. We conclude increases in absolute within-host growth rates appear to be more important than social cheating in driving virulence evolution in this experimental context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号