首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Shimo-Oka  M Hayashi  Y Watanabe 《Biochemistry》1980,19(21):4921-4926
This report presents evidence suggesting the direct binding between tubulin and myosin: (1) coprecipitation of tubulin with myosin occurred at a low ionic strength at which no precipitation of tubulin by itself occurred; (2) the amount of tubulin coprecipitated was unchanged when the coprecipitate was washed thoroughly; (3) about 2 mol of tubulin dimer could bind per mol of myosin at the maximum under our experimental conditions. The binding of about 1 mol of tubulin dimer was influenced by the presence of F-actin, but that of the other 1 mol of tubulin dimer was uninfluenced. In the former binding, tubulin or actin which bound first to myosin was suggested to have a priority. With regard to the priority of the binding, a similar result was obtained from the experiments of tubulin interference in actin activation of myosin Mg2+-ATPase. The tubulin-myosin binding occurred moderately even at 0 degrees C and was not affected by Ca2+ (2 mM), colchicine (200 microM), or Mg-ATP (4 mM), reflecting that the ability of tubulin to bind to myosin was different from the ability of tubulin to form microtubules and that the nature of tubulin-myosin binding was different from that of F-actin-myosin binding. Besides tubulin-myosin interaction, a possible interaction between microtubule-associated proteins (MAPs) and actomyosin was suggested from the data that MAPs activated actomyosin MG2+-ATPase activity while purified tubulin inhibited the activity.  相似文献   

2.
The interaction of tubulin with chromatin has been studied using a radiolabeled tubulin binding assay and velocity sedimentation analysis on isokinetic sucrose gradients. Soluble chromatin was prepared by mild micrococcal nuclease digestion of rat liver nuclei and tubulin was purified from rat brain by temperature-dependent assembly-disassembly and phosphocellulose chromatography. The tubulin-binding assay is based on the ability of chromatin to precipitate quantitatively at physiological ionic strength allowing separation of free tubulin from chromatin-bound tubulin. The binding of tubulin to unfractionated soluble chromatin was rapid, reversible and saturable. Saturation of binding sites was obtained using tubulin concentrations ranging from 0.5 to 400 micrograms/ml, in the presence of a high concentration (2.5 mg/ml) of another acidic protein, bovine serum albumin. The Scatchard and Hill plots showed that tubulin bound to a single class of non-interacting sites and yielded values of (0.5-0.6) X 10(7) M-1 for an apparent Ka and a maximal binding capacity of 0.8 nmol tubulin/mg DNA, i.e. about 1 molecule of tubulin/10 nucleosomes. Similar binding parameters were obtained when binding experiments were performed with insoluble chromatin in 0.15 M NaCl. Velocity sedimentation analysis of tubulin-chromatin complexes revealed that tubulin bound to all classes of chromatin oligomers, irrespective of the length of the nucleosomal chain. Tubulin-trinucleosome complexes formed from isolated trinucleosome in the presence of an excess of tubulin were separated from free reactants. It was found that 10-15% of the starting oligonucleosomal species reacted with tubulin, in a stoichiometry of about 0.8 molecule of tubulin/nucleosome. Given the characteristics of the binding and the expected cellular free tubulin concentration, the tubulin-chromatin interaction could possibly take place in vivo, when the nuclear membrane breaks down during the first steps of mitosis.  相似文献   

3.
When microtubules are purified by polymerization and depolymerization in a buffer containing glycerol, some glycerol becomes bound to the microtubule protein and is not removable by gel filtration or by prolonged dialysis. Both 6s tubulin and larger aggregates containing tubulin and accessory proteins bind glycerol. The 6s fraction has associated with it about 5 moles of glycerol per mole of tubulin dimer; 3 moles are exchangeable upon polymerization-depolymerization and 2 moles are not. The aggregate fraction has associated with it about 22 moles of glycerol per mole of tubulin dimer; approximately 11 moles are exchangeable and 11 moles are not.  相似文献   

4.
E Y Lai  C Walsh  D Wardell  C Fulton 《Cell》1979,17(4):867-878
The programmed de novo synthesis of flagellar tubulin during the hour-long differentiation of Naegleria gruberi from amoebae to flagellates is our paradigm for the study of gene expression during cell differentiation. This paper reports the efficient translation of flagellar tubulin mRNA in the wheat germ cell-free system directed by total or polyadenylated RNA extracted from differentiating cells. The tubulin in the in vitro product has a subunit molecular weight of 55,000, separates into alpha and beta subunits under suitable conditions of polyacrylamide gel electrophoreis and co-polymerizes with calf brain tubulin. At least half of the tubulin synthesized in vitro is precipitated by antibodies specific to flagellar tubulin, and the immunoprecipitated tubulin subunits yield peptide maps similar to those of outer doublet tublin. Flagellar tubulin is the predominant protein synthesized in the cell-free system, and amounts to about 5% of the polypeptides whose synthesis is directed by total RNA from differentiating cells. In contrast, little or no flagellar tubulin is synthesized when the cell-free system is directed by RNA extracted from amoebae prior to differentiation. Translation assays show that at least 92% of the flagellar tubulin mRNA appears during differentiation. The time course of appearance of this mRNA was measured by quantitative immunoprecipitation of the cell-free products. Under conditions where cells from flagella 60 min after initiation of differentiation, translatable flagellar tubulin mRNA was first detected at 20 min, reached a maximum at about 60 min and then declined. An excellent correlation was observed between the amount of translatable flagellar tubulin mRNA and the previously measured rates of flagellar tubulin synthesis in vivo. These results indicate that synthesis of flagellar tubulin is a direct reflection of the abundance of its mRNA, and provide the molecular techniques for dissection of the factors that regulate the rapid appearance of this structural protein during differentiation.  相似文献   

5.
There is considerable evidence that tubulin exists in multiple isotypes, differing in amino acid sequence and tissue distribution. Little is known, however, about the functional significance of these isotypes. Chicken erythrocyte beta-tubulin has been shown by peptide mapping to differ significantly from chicken brain beta-tubulin (Murphy, D. B., and Wallis, K. T. (1983) J. Biol. Chem. 258, 7870-7875). We now find that when the two tubulins, in their native states, are incubated with N,N'-ethylenebis(iodoacetamide) (EBI), a bifunctional sulfhydryl-directed reagent, microtubule assembly by brain tubulin is much more sensitive to inhibition by EBI than is erythrocyte tubulin assembly. The resistance of erythrocyte microtubule assembly to inhibition by EBI is correlated with a low reactivity of erythrocyte tubulin with [14C]EBI. This difference is most marked in the beta subunit which reacts 15 and 17% as well, respectively, with [14C]EBI as do the beta 1 and beta 2 subunits of brain tubulin. Also, erythrocyte beta reacts about 33% as well as does brain beta with iodo[14C]acetamide. These results suggest that a reactive sulfhydryl group, whose oxidation prevents microtubule assembly, is present in brain tubulin but absent or inaccessible in erythrocyte tubulin. Since purified erythrocyte tubulin self-aggregates much more readily than does brain tubulin, it is conceivable that erythrocyte and brain tubulin may differ in that the latter may have its assembly subject to a complex regulation, while erythrocyte tubulin assembly may be regulated by a simpler mechanism.  相似文献   

6.
The amount of soluble tubulin in a temperature-sensitive (ts) size mutant of the ciliate Tetrahymena was measured in a variety of physiological conditions. For this purpose a competitive ELISA assay for tubulin was set up. The assay is based on an antiserum against Tetrahymena axonemal tubulin. Characterization of the antiserum shows its mono-specificity towards tubulin as well as its potential to recognize tubulin from a wide variety of cellular sources and organisms. After fractionation of the cells into soluble material, cold-labile and cold-resistant structures, we found very little tubulin soluble (less than 20% of the total), while most of the tubulin is polymerized, especially into cortical structures. Prolonged starvation does not alter the tubulin content. During the culture growth cycle the percentage of the soluble tubulin increases. Growing the ts mutant at high temperature to a large cell size will also increase the pool of soluble tubulin to a large extent. Only under this condition is the amount of soluble tubulin about equal to that fixed in cilia. The tubulins in the three different compartments are polymorphic and have a different metabolism. This is indicated by the much higher specific activity of soluble tubulin compared with the structurally bound material. In agreement, the half-life of the soluble tubulin is shorter than that of the cortical tubulin.  相似文献   

7.
Characterization and in vitro polymerization of Tetrahymena tubulin   总被引:6,自引:0,他引:6  
Tetrahymena tubulin was purified from the cell extract using DEAE-Sephadex A-50 ion-exchanger and ammonium sulfate precipitation. About 2.2% of the total protein in the 20,000 X g supernatant was recovered as DEAE-Sephadex-purified tubulin fraction. Applying the temperature-dependent polymerization-depolymerization method to this fraction in the presence of Tetrahymena outer fibers as a seed, almost pure tubulin was obtained. Tetrahymena tubulin dimer showed different behavior on SDS-polyacrylamide gels from porcine brain tubulin, and showed very low affinity for colchicine, amounting to about one-twentieth of the binding to porcine brain tubulin. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragment induced polymerization as demonstrated by viscometric measurements, but the reconstituted microtubules were very unstable in the absence of glycerol. Microtubule-depolymerizing agents such as Ca2+ ions, low temperature, or colchicine all inhibited in vitro polymerization. Although Tetrahymena tubulin purified by the polymerization-depolymerization method could copolymerize with porcine brain microtubules, the DEAE-Sephadex-purified tubulin fraction suppressed the initial rate of porcine brain microtubule assembly in vitro. There seemed to be no differences between cytoplasmic tubulin and outer fiber tubulin in colchicine binding activity or SDS-gel electrophoretic behavior, or between the fine structure of both reconstituted microtubules observed by electron microscopy.  相似文献   

8.
The maximum achievable tyrosination level of neurotubulin, in vitro, is about 50%. We have developed a method to obtain a complete separation of the tyrosinatable and nontyrosinatable species. We use an immunoaffinity column, with coupled YL 1/2 monoclonal antibody (anti-Tyr-tubulin) and rapid desalting methods. Both subpopulations can be obtained in a polymerizable, apparently native, form. We find that about 35% of the brain tubulin is truly nontyrosinatable, despite the fact that it is assembly competent. Using a polyclonal antibody directed against nontyrosinatable tubulin, we find that it recognizes a specific epitope on the alpha-subunit of the dimer. The existence of an abundant tubulin subspecies, structurally different from tyrosinatable tubulin, should obviously be kept in mind in immunofluorescence studies of the distribution of nontyrosinated tubulin in brain tissues. Furthermore, we have extensively investigated the effect of tubulin tyrosination on microtubule dynamics. Despite the homogeneity of the populations under comparison, we find no significant effect of tyrosination on microtubule dynamics. Similarly, the stabilizing effects of microtubule associated proteins and of STOP protein were identical in both subpopulations. The drug taxol seems more efficient in stabilizing detyrosinated microtubules, but the difference is moderate. Taken together, these findings suggest that tubulin tyrosination does not effect microtubule stabilization, neither through modifications of the intrinsic tubulin properties nor through a differential binding of stabilizing proteins. Finally, the complete separation of two tubulin species (tyrosinated or detyrosinated) with similar kinetic properties, but immunologically different, should be of value in many kinetic studies of microtubule assembly.  相似文献   

9.
The structure of tubulin, recently solved by electron crystallography, has given a first look at the molecular basis for some of the properties of tubulin and microtubules that have been observed over the last decades. We discuss how the structure relates to some of these properties, and how inferences about drug binding sites can explain some of the effects of the drugs on tubulin. Microtubules can form a highly dynamic system that requires careful tuning of the stability and properties of tubulin and its interactions with its many ligands. Understanding these interactions can provide fundamental information on the regulation of the microtubule system.  相似文献   

10.
Tubulin has been implicated as a nuclear protein because of the role it plays in mitosis. In this paper we examined the role of tubulin in the nuclei of nonmitotic cells. Tubulin was found distributed throughout the nucleus and particularly in association with the chromatin. It comprised about 6.5% of the nonhistone chromosomal proteins. Nuclear tubulin appeared to be nonmicrotubular in form. Fluorescence microscopy data on metaphase chromosomes revealed that tubulin was present on the outside of the chromosomes. These data suggest a structural role for chromatin-associated tubulin.  相似文献   

11.
Polymerized tubulin can be stabilized in Kane's spindle isolation medium (HGL solution), isolated by differential centrifugation and then assayed by colchicine binding activity. In the eggs of the surf clam, Spisula solidissima, the level of particulate tubulin undergoes a series of specific changes during first meiotic division. In either unactivated ("interphase") eggs or metaphase eggs the amount of particulate tubulin was about 13% of the total at 23°C. The amount of particulate tubulin decreased shortly after activation, reaching a minimum value at about 5 min, the time of nuclear membrane breakdown. The particulate tubulin concentration then rose, reaching a maximum at metaphase, and then decreased again during anaphase, reaching a minimum at first polar body formation. In HGL homogenates of unactivated eggs a structure is present which has been shown to contain the interphase particulate tubulin (IPT). This structure consists essentially of a 10–20 µ granular sphere attached to a membranous material which is probably part of the egg cortex. These particles are absent at the time of nuclear membrane breakdown, when the level of particulate tubulin is minimal and when the first signs of spindle formation are visible. Electron microscopy of these particles by negative staining indicates that they are composed of microtubules associated with a granular matrix which may be a polymorphic aggregate of tubulin.  相似文献   

12.
Bai R  Durso NA  Sackett DL  Hamel E 《Biochemistry》1999,38(43):14302-14310
The sponge-derived antimitotic tripeptide hemiasterlin was previously shown to inhibit tubulin polymerization. We have now demonstrated that hemiasterlin resembles most other antimitotic peptides in noncompetitively inhibiting the binding of vinblastine to tubulin (apparent K(i) value, 7.0 microM), competitively inhibiting the binding of dolastatin 10 to tubulin (apparent K(i) value, 2.0 microM), stabilizing the colchicine binding activity of tubulin, inhibiting nucleotide exchange on beta-tubulin, and inducing the formation of tubulin oligomers that are stable to gel filtration in the absence of free drug, even at low drug concentrations. The tubulin oligomerization reaction induced by hemiasterlin was compared to the reactions induced by dolastatin 10 and cryptophycin 1. Like dolastatin 10, hemiasterlin induced formation of a tubulin aggregate that had the morphological appearance primarily of ring-like structures with a diameter of about 40 nm, while the morphology of the cryptophycin 1 aggregate consisted primarily of smaller rings (diameter about 30 nm). However, the hemiasterlin aggregate differed from the dolastatin 10 aggregate in that its formation was not associated with turbidity development, and the morphology of the hemiasterlin aggregate (as opposed to the dolastatin 10 aggregate) did not change greatly when microtubule-associated proteins were present (tight coils and pinwheels are observed with dolastatin 10 but not with hemiasterlin or cryptophycin 1). Opacification of tubulin-dolastatin 10 mixtures was inhibited by hemiasterlin at 22 degrees C and stimulated at 0 degrees C, while cryptophycin 1 was inhibitory at both reaction temperatures.  相似文献   

13.
: Tubulin tyrosine ligase catalyzes the reversible addition of tyrosine to the C-terminus of tubulin α chains. By using ligase and carboxypeptidase A in conjunction, we have previously shown that brain cytoplasmic tubulin exists in three forms: 15–40% already has C-terminal tyrosine, another 10-30% can accept additional tyrosine, and about one-half is an uncharacterized species which is not a ligase substrate. A membrane-bound fraction of brain tubulin, purified by vinblastine precipitation from a detergent extract, has been found to differ by the complete absence of preexisting tyrosine. The membrane fraction from which tubulin was extracted also contained masked forms of both ligase and a distinct detyrosylating enzyme, which can be released by detergent extraction. The turnover of α-chain C-terminal tyrosine in vivo was studied by incubating brain mince with labeled tyrosine, or injecting it intracerebrally, under conditions where protein synthesis was inhibited. Tyrosine appeared to turn over to about the same extent in membrane-bound, as in soluble, tubulin. This apparently paradoxical result was not due to ATPase in the membrane fraction, which might have allowed ligase-catalyzed exchange between free and fixed tyrosine. Authentic [14C]tyrosylated tubulin added to the brain membrane fraction was not detyrosylated or subject to endoprotease digestion during subsequent procedures to isolate tubulin. The unexpected finding that tubulin tyrosylated at the C-terminal in vivo appears to be in the “non-substrate” fraction points toward a possible resolution of the paradox.  相似文献   

14.
Eucaryotic cells contain a complex network of filamentous proteins collectively called the cytoskeleton, which participates in many cellular functions, including organelle motility and information transfer. Tubulins are one of the maincomponents of the cell cytoskeleton. Tubulins of high purity were prepared from day lily pollen grains, and were biochemically and biophysically characterized in this study. The molecular weight ofα-andβ- tubulin from day lily pollen is about 56 kD and 58 kD on SDS-PAGE, respectively. The purity is 93.7% by scanning analysis. The tubulin has a sedimentation coefficient of 6.2S and an isoelectric point of about 5.35. The maximum ultraviolet absorption is 280.8 nm. Fluorescence emission wave length of day lily tubulin is 338 nm by excitation at 282 nm. Circular dichroism (CD) spectrum analysis showed that the percentage ofα-helix, β-sheet and random coil of day lily tubulin is 27.24%, 24.48% and 48.28%, respectively, indicating a typical feature of globulin.  相似文献   

15.
After incubation of intact living cultured rat cerebellar granule cells at 37 degrees C with a new GM1 ganglioside analog, carrying a diazirine group and labeled with (125)I in the ceramide moiety, followed by photoactivation, a relatively small number of radiolabeled proteins were detected in a membrane-enriched fraction. A protein of about 55 kDa with a pI of about 5 carried a large portion of the radioactivity even if incubation and cross-linking were performed at 4 degrees C and in the presence of inhibitors of endocytosis, suggesting that it is cross-linked at the plasma membrane. Immunoprecipitation and Western blotting experiments showed the positivity of this protein for tubulin. Trypsin treatment of intact cells ruled out the involvement of a plasma membrane surface tubulin. Release of radioactivity from cross-linked tubulin after KOH treatment (but not hydroxylamine treatment) suggested that the photoactivated ganglioside reacts with an ester-linked fatty acid anchor of tubulin. Low buoyancy, detergent-resistant membrane fractions, isolated from cells after incubation with the GM1 analogue and photoactivation, proved their enrichment in endogenous and radioactive GM1 ganglioside, sphingomyelin, cholesterol, signal transduction proteins, and tubulin. It is noteworthy that radioactive tubulin was also detected in this fraction, indicating the presence of tubulin molecules carrying a fatty acid anchor in detergent-resistant, ganglioside-enriched domains of the plasma membrane. Parallel experiments carried out with a phosphatidylcholine analogue, also carrying a diazirine group and labeled with (125)I in the fatty acid moiety, showed the specificity of tubulin interaction with GM1. Taken together, these results indicate that some tubulin molecules are associated with a lipid anchor to detergent-resistant glycolipid-enriched domains of the plasma membrane. This novel feature of membrane domains can provide a key for a better understanding of their biological role.  相似文献   

16.
The stability of microtubules during the cell-cycle is regulated by a number of cellular factors, some of which stabilize microtubules and others that promote breakdown. XKCM1 is a kinesin-like protein that induces microtubule depolymerization and is required for mitotic spindle assembly. We have examined the binding and depolymerization effects of XKCM1 on different tubulin polymers in order to learn about its mechanism of action. Zinc-induced tubulin polymers, characterized by an anti-parallel protofilament arrangement, are depolymerized by XKCM1, indicating that this enzyme acts on a single protofilament. GDP-tubulin rings, which correspond to the low-energy state of tubulin, are stable only under conditions that inhibit XKCM1 depolymerizing activity, but can be stabilized by XKCM1 bound to AMPPNP. Tubulin polymers made of subtilisin-treated tubulin (lacking the tubulin C-terminal tail) are resistant to XKCM1-induced depolymerization, suggesting that the interaction of the acidic tail of tubulin with basic residues in XKCM1 unique to Kin I proteins is required for depolymerization.  相似文献   

17.
Summary Accumulation of tubulin as compared with the accumulation of total cellular protein in human NHIK 3025 cells treated with the sulfone 2-(2-thenyl)sulfonyl-5-bromopyrimidine (NY 4137) and the sulfoxide 2-(2thenyl)sulfinyl-5-bromopyrimidine (NY 4138), two mitotic inhibitors, were investigated by two-parametric flow cytometry. Following a 4 h treatment with NY 4137 tubulin accumulation is inhibited while total protein continues to accumulate. After treatment for 4h with NY 4138 the accumulation of total protein is approximately constant, while the accumulation of tubulin is reduced although not to the same degree as that found for NY 4137-treated cells. In addition, the percentage tubulin SH-groups (6.89 ± 0.14) remaining after treatment of purified rat brain tubulin with NY 4137 or NY 4138 was determined. Treatment with 0.0125 mM NY 4137 reduced the number of tubulin SH-groups detectable with dithiobis benzoate or from 6.89 ± 0.14 before treatment to about 4 after treatment. However, practically all SH-groups of tubulin remain detectable following treatment with the same concentration of NY 4138. From the results described in this report we infer that NY 4137 binds to tubulin SH-groups and that inhibition of tubulin accumulation follows as a secondary effect.  相似文献   

18.
Estimation of the diffusion-limited rate of microtubule assembly.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microtubule assembly is a complex process with individual microtubules alternating stochastically between extended periods of assembly and disassembly, a phenomenon known as dynamic instability. Since the discovery of dynamic instability, molecular models of assembly have generally assumed that tubulin incorporation into the microtubule lattice is primarily reaction-limited. Recently this assumption has been challenged and the importance of diffusion in microtubule assembly dynamics asserted on the basis of scaling arguments, with tubulin gradients predicted to extend over length scales exceeding a cell diameter, approximately 50 microns. To assess whether individual microtubules in vivo assemble at diffusion-limited rates and to predict the theoretical upper limit on the assembly rate, a steady-state mean-field model for the concentration of tubulin about a growing microtubule tip was developed. Using published parameter values for microtubule assembly in vivo (growth rate = 7 microns/min, diffusivity = 6 x 10(-12) m2/s, tubulin concentration = 10 microM), the model predicted that the tubulin concentration at the microtubule tip was approximately 89% of the concentration far from the tip, indicating that microtubule self-assembly is not diffusion-limited. Furthermore, the gradients extended less than approximately 50 nm (the equivalent of about two microtubule diameters) from the microtubule tip, a distance much less than a cell diameter. In addition, a general relation was developed to predict the diffusion-limited assembly rate from the diffusivity and bulk tubulin concentration. Using this relation, it was estimated that the maximum theoretical assembly rate is approximately 65 microns/min, above which tubulin can no longer diffuse rapidly enough to support faster growth.  相似文献   

19.
Tau is a neuronal microtubule-associated protein that plays a central role in many cellular processes, both physiological and pathological, such as axons stabilization and Alzheimer's disease. Despite extensive studies, very little is known about the detailed molecular basis of tau binding to microtubules. We used the four-repeat recombinant htau40 and tubulin dimers to show for the first time that tau is able to induce both microtubule and ring formation from 6S alphabeta tubulin in phosphate buffer without added magnesium (nonassembly conditions). The amount of microtubules or rings formed was protein concentration-, temperature-, and nucleotide-dependent. By means of biophysical approaches, we showed that tau binds to tubulin without global-folding change, detectable by circular dichroism. We also demonstrated that the tau-tubulin interaction follows a ligand-mediated elongation process, with two tau-binding site per tubulin dimer. Moreover, using a tubulin recombinant alpha-tubulin C-terminal fragment (404-451) and a beta-tubulin C-terminal fragment (394-445), we demonstrated the involvement of both of these tubulin regions in tau binding. From this model system, we gain new insight into the mechanisms by which tau binds to tubulin and induces microtubule formation.  相似文献   

20.
D Saltarelli  D Pantaloni 《Biochemistry》1983,22(19):4607-4614
We have shown previously [Saltarelli, D., & Pantaloni, D. (1982) Biochemistry 21, 2996-3006] that the tubulin-colchicine complex is able to polymerize in vitro into peculiar "curly" polymers, under the solution conditions permitting polymerization of unliganded tubulin into microtubules. Here it is further demonstrated that unliganded tubulin can be incorporated into these "curly" polymers. The partial critical concentration of tubulin-colchicine is decreased upon incorporation of unliganded tubulin into the copolymer. GTP hydrolysis occurs on unliganded tubulin upon incorporation in the copolymer. Tubulin-podophyllotoxin does not copolymerize with tubulin-colchicine to form a large polymer but interacts with it, preventing tubulin-colchicine polymerization. The data have been analyzed within a model of random copolymerization of unliganded tubulin and tubulin-colchicine into "curly" polymers. A corollary is that unliganded tubulin is virtually able to self-assemble into curly polymers with a critical concentration 10-fold higher than the critical concentration found for microtubule assembly. Consequently, these peculiar tubulin homopolymers cannot be observed except as transients at high concentrations, or when microtubule assembly is inhibited. Kinetic measurements of the T-TC copolymerization process and associated GTP hydrolysis at different T/TC ratios provide supplementary information about some privileged interactions between tubulin and tubulin-colchicine molecules. A comprehensive phase diagram of the various possible polymers formed in the presence of tubulin and tubulin-colchicine is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号