首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Retinoic acid (RA) is known to cause the myeloid differentiation of HL-60 human myeloblastic leukemia cells in a process requiring MEK-dependent ERK2 activation. This RA-induced ERK2 activation appears after approximately 4 h and persists until the cells are differentiated and G0 arrested (Yen et al, 1998). This motivates the question of whether RA also activated RAF as part of a typical RAF/MEK/MAPK cascade. Retinoic acid is shown here to also increase the phosphorylation of RAF, but in an unusual way. Surprisingly, increased RAF phosphorylation is first detectable after 12 to 24 hours by phosphorylation-induced retardation of polyacrylamide gel electrophoretic mobility. The RA-induced increased RAF phosphorylation is still apparent after 72 hours of treatment when most cells are differentiated and G0 arrested. There is a progressive dose-response relationship with 10(-8), 10(-7), and 10(-6) M RA. The RA-induced RAF phosphorylation corresponds to increased in vitro kinase activity. Inhibition of MEK with a PD98059 dose which inhibits ERK2 phosphorylation and subsequent cell differentiation also inhibits RAF phosphorylation. RA-induced MEK-dependent RAF phosphorylation is not due to changes in the amount of cellular MEK. The induced RAF phosphorylation, as well as anteceding ERK2 activation, depends on ligand-induced activation of both an RARalpha receptor and an RXR receptor. This and the slow kinetics of activation suggest a need for prior RA-induced gene expression. In summary, RA induces a MEK-dependent prolonged RAF activation, whose slow onset occurs after ERK2 activation but still well before cell cycle arrest and cell differentiation. The RA-induced increased RAF phosphorylation thus differs from typical mitogenic growth factor signaling, features that may contribute to cell cycle arrest and differentiation instead of division as the cellular outcome.  相似文献   

2.
3.
Retinoic acid (RA) is known to cause MAPK signaling which propels G0 arrest and myeloid differentiation of HL-60 human myeloblastic leukemia cells. The present studies show that RA up-regulated expression of SLP-76 (Src-homology 2 domain-containing leukocyte-specific phospho-protein of 76 kDa), which became a prominent tyrosine-phosphorylated protein in RA-treated cells. SLP-76 is a known adaptor molecule associated with T-cell receptor and MAPK signaling. To characterize functional effects of SLP-76 expression in RA-induced differentiation and G0 arrest, HL-60 cells were stably transfected with SLP-76. Expression of SLP-76 had no discernable effect on RA-induced ERK activation, subsequent functional differentiation, or the rate of RA-induced G0 arrest. To determine the effects of SLP-76 in the presence of a RA-regulated receptor, SLP-76 was stably transfected into HL-60 cells already overexpressing the colony stimulating factor-1 (CSF-1) receptor, c-FMS, from a previous stable transfection. SLP-76 now enhanced RA-induced ERK activation, compared to parental c-FMS transfectants. It also enhanced RA-induced differentiation, evidenced by enhanced paxillin expression, inducible oxidative metabolism and superoxide production. RA-induced RB tumor suppressor protein hypophosphorylation was also enhanced, as was RA-induced G0 cell cycle arrest. A triple Y to F mutant SLP-76 known to be a dominant negative in T-cell receptor signaling failed to enhance RA-induced paxillin expression, but enhanced RA-induced ERK activation, differentiation and G0 arrest essentially as well as wild-type SLP-76. Thus, SLP-76 overexpression in the presence of c-FMS, a RA-induced receptor, had the effect of enhancing RA-induced cell differentiation. This is the first indication to our knowledge that RA induces the expression of an adapter molecule to facilitate induced differentiation via co-operation between c-FMS and SLP-76.  相似文献   

4.
Summary Retinoic acid is known to cause the myeloid differentiation and G1/0 cell cycle arrest of HL-60 cells in a process that requires mitogen-activated protein/extracellular signal regulated kinase (MEK)-dependent extracellular signal regulated kinase (ERK)2 activation. It has also been shown that ectopic expression of cFMS, a platelet-derived growth factor (PDGF)-family transmembrane tyrosine kinase receptor, enhances retinoic acid-induced differentiation and G1/0 arrest. The mechanism of how the retinoic acid and cFMS signaling pathways intersect is not known. The present data show that the ectopic expression of cFMS results in the differential loss of sensitivity of retinoic acid-induced differentiation or G1/0 arrest to inhibition of ERK2 activation. PD98059 was used to inhibit MEK and consequently ERK2. In wild-type HL-60 cells, PD98059 blocked retinoic acid-induced differentiation; but in cFMS stable transfectants, PD98059 only attenuated the induced differentiation, with the resulting response resembling that of retinoic acid-treated wild-type HL-60. In wild-type HL-60, PD98059 greatly attenuated the retinoic acid-induced G1/0 arrest allied with retinoblastoma (RB) hypophosphorylation; but in cFMS stable transfectants, PD98059 had no inhibitory effect on RB hypophosphorylation and G1/0 arrest. This differential sensitivity to PD98059 and uncoupling of retinoic acid-induced differentiation and G1/0 arrest in cFMS transfectants is associated with changes in mitogen-activated protein kinase signaling molecules. The cFMS transfectants had more activated ERK2 than did the wild-type cells, which surprisingly was not attributable to enhanced mitogen-activated protein-kinase-kinase-kinase (RAF) phosphorylation. Retinoic acid increased the amount of activated ERK2 and phosphorylated RAF in both cell lines. But PD98059 eliminated detectable ERK2 activation, as well as inhibited RAF phosphorylation, in untreated and retinoic acid-treated wild-type HL-60 and cFMS transfectants, consistent with MEK or ERK feedback-regulation of RAF, in all four cases. Since PD98059 blocks the cFMS-conferred enhancement of the retinoic acid-induced differentiation, but not growth arrest, the data indicate that cFMS-enhanced differentiation acts primarily through MEK and ERK2, but cFMS-enhanced G1/0 arrest allied with RB hypophosphorylation depends on another cFMS signal route, which by itself can effect G1/0 arrest without activated ERK2. Ectopic expression of cFMS and differential sensitivity to ERK2 inhibition thus reveal that retinoic acid-induced HL-60 cell differentiation and G1/0 arrest are differentially dependent on ERK2 and can be uncoupled. A significant unanticipated finding was that retinoic acid caused a MEK-dependent increase in the amount of phosphorylated RAF. This increase may help sustain prolonged ERK2 activation.  相似文献   

5.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

6.
All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase and in vivo transamidation and activation of RhoA. In addition, RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1, and p38alpha/beta/gamma MAP kinases. Using C-3 exoenzyme (RhoA inhibitor) or monodansylcadaverine (TGase inhibitor), we show that transamidated RhoA regulates cytoskeletal rearrangement and activation of ERK1/2 and p38gamma MAP kinases. Further, by using stable SH-SY5Y cell lines (overexpressing wild-type, C277S mutant, and antisense TGase), we demonstrate that transglutaminase activity is required for activation of RhoA, ERK1/2, JNK1, and p38gamma MAP kinases. Activated MAP kinases differentially regulate RA-induced neurite outgrowth and neuronal marker expression. The results of our studies suggest a novel mechanism of RA signaling, which involves activation of TGase and transamidation of RhoA. RA-induced activation of TGase is proposed to induce multiple signaling pathways that regulate neuronal differentiation.  相似文献   

7.
Definition of cell cycle control proteins that modify tumor cell resistance to estrogen (E2) signaling antagonists could inform clinical choice for estrogen receptor positive (ER+) breast cancer (BC) therapy. Cyclin G2 (CycG2) is upregulated during cell cycle arrest responses to cellular stresses and growth inhibitory signals and its gene, CCNG2, is directly repressed by E2-bound ER complexes. Our previous studies showed that blockade of HER2, PI3K and mTOR signaling upregulates CycG2 expression in HER2+ BC cells, and that CycG2 overexpression induces cell cycle arrest. Moreover, insulin and insulin-like growth factor-1 (IGF-1) receptor signaling strongly represses CycG2. Here we show that blockade of ER-signaling in MCF7 and T47D BC cell lines enhances the expression and nuclear localization of CycG2. Knockdown of CycG2 attenuated the cell cycle arrest response of E2-depleted and fulvestrant treated MCF7 cells. These muted responses were accompanied by sustained inhibitory phosphorylation of retinoblastoma (RB) protein, expression of cyclin D1, phospho-activation of ERK1/2 and MEK1/2 and expression of cRaf. Our work indicates that CycG2 can form complexes with CDK10, a CDK linked to modulation of RAF/MEK/MAPK signaling and tamoxifen resistance. We determined that metformin upregulates CycG2 and potentiates fulvestrant-induced CycG2 expression and cell cycle arrest. CycG2 knockdown blunts the enhanced anti-proliferative effect of metformin on fulvestrant treated cells. Meta-analysis of BC tumor microarrays indicates that CCNG2 expression is low in aggressive, poor-prognosis BC and that high CCNG2 expression correlates with longer periods of patient survival. Together these findings indicate that CycG2 contributes to signaling networks that limit BC.  相似文献   

8.
Polyomavirus small t antigen (ST) impedes late features of retinoic acid (RA)-induced HL-60 myeloid differentiation as well as growth arrest, causing apoptosis instead. HL-60 cells were stably transfected with ST. ST slowed the cell cycle, retarding G2/M in particular. Treated with RA, the ST transfectants continued to proliferate and underwent apoptosis. ST also impeded the normally RA-induced hypophosphorylation of the retinoblastoma tumor suppressor protein consistent with failure of the cells to arrest growth. The RA-treated transfectants expressed CD11b, an early cell surface differentiation marker, but inducible oxidative metabolism, a later and more mature functional differentiation marker, was largely inhibited. Instead, the cells underwent apoptosis. ST affected significant known components of RA signaling that result in G0 growth arrest and differentiation in wild-type HL-60. ST increased the basal amount of activated ERK2, which normally increases when wild-type cells are treated with RA. ST caused increased RARalpha expression, which is normally down regulated in RA-treated wild-type cells. The effects of ST on RA-induced myeloid differentiation did not extend to monocytic differentiation and G0 arrest induced by 1,25-dihydroxy vitamin D3, whose receptor is also a member of the steroid-thyroid hormone superfamily. In this case, ST abolished the usually induced G0 arrest and retarded, but did not block, differentiation without inducing apoptosis, thus uncoupling growth arrest and differentiation. In sum, the data show that ST disrupted the normal RA-induced program of G0 arrest and differentiation, causing the cells to abort differentiation and undergo apoptosis.  相似文献   

9.
10.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

11.
12.
The RAF–MEK–ERK pathway regulates both myoblast proliferation and differentiation; however, it is unclear how these events are coordinated. Here, we show that human phosphatidylethanolamine‐binding protein 4 (PEBP4), a RAF kinase inhibitory protein (RKIP) family protein expressed preferentially in muscle, regulates the activity of the ERK pathway and myoblast differentiation by acting as a scaffold protein. In contrast to RKIP, which disrupts the RAF1–MEK interaction, PEBP4 forms ternary complexes with RAF1 and MEK, and can scaffold this interaction. PEBP4 expression is induced during the differentiation of primary human myoblasts. Consistent with the properties of a scaffold, PEBP4 enhances the RAF1–MEK interaction and the activation of MEK at low expression levels, whereas it inhibits these parameters at higher expression levels. Downregulation of PEBP4 by short hairpin RNA in human myoblasts increases MEK signalling and inhibits differentiation; by contrast, PEBP4 overexpression enhances differentiation. Thus, PEBP4 participates in the control of muscle cell differentiation by modulating the activity of MEK and ERK.  相似文献   

13.
Park JI  Strock CJ  Ball DW  Nelkin BD 《Cytokine》2005,29(3):125-134
Interleukin-1beta (IL-1beta) is a pleiotropic cytokine that can induce several cellular signal transduction pathways. Here, we show that IL-1beta can induce cell cycle arrest and differentiation in the human medullary thyroid carcinoma (MTC) cell line, TT. IL-1beta induces cell cycle arrest accompanied by morphological changes and expression of the neuroendocrine marker calcitonin. These changes are blocked by the MEK1/2 specific inhibitor U0126, indicating that MEK1/2 is essential for IL-1beta signaling in TT cells. IL-1beta induces expression of leukemia inhibitory factor (LIF) and activation of STAT3 via the MEK/ERK pathway. This activation of STAT3 could be abrogated by treatment with anti-LIF neutralizing antibody or anti-gp130 blocking antibody, indicating that induction of LIF expression is sufficient and essential for STAT3 activation by IL-1beta. In addition to activation of the LIF/JAK/STAT pathway, IL-1beta also induced an MEK/ERK-mediated intracellular cell-autonomous signaling pathway that is independently sufficient for growth arrest and differentiation. Thus, IL-1beta activates the MEK/ERK pathway to induce growth arrest and differentiation in MTC cells via dual independent signaling mechanisms, the cell-extrinsic LIF/JAK/STAT pathway, and the cell-intrinsic autonomous signaling pathway.  相似文献   

14.
In vitromegakaryocytic differentiation of the pluripotent K562 human leukemia cell line is induced by PMA. Treatment of K562 cells with PMA results in growth arrest, polyploidy, morphological changes, and increased cell–cell and cell–substrate adhesion. These PMA-induced changes in K562 cells are preceded by a rapid rise in the activity of MEK (MAP kinase/extracellular regulated kinases) that leads to a sustained activation of ERK2 (extracellular regulated kinase; MAPK). Blockade of MEK1 activation by PD098059, a recently described specific MEK inhibitor [D. T. Dudleyet al.(1995).Proc. Natl. Acad. Sci. USA92, 7686–7689], reverses both the growth arrest and the morphological changes of K562 cells induced by PMA treatment. These changes are not associated with a disruption of PMA-induced down-regulation of BCR-ABL kinase or early integrin signaling events but are associated with a block of the cell-surface expression of the gpIIb/IIIa (CD41) integrin, a cell marker of megakaryocytic differentiation. These results demonstrate that the PMA-induced signaling cascade initiated by protein kinase C activation requires the activity of the MEK/ERK signaling complex to regulate cell cycle arrest, thus regulating the program that leads to the cell-surface expression of markers associated with megakaryocytic differentiation.  相似文献   

15.
BRCA1-induced apoptosis involves inactivation of ERK1/2 activities   总被引:7,自引:0,他引:7  
Mutation in the BRCA1 gene is associated with an increased risk of breast and ovarian cancer. Recent studies have shown that the BRCA1 gene product may be important in mediating responses to DNA damage and genomic instability. Previous studies have indicated that overexpression of BRCA1 can induce apoptosis or cell cycle arrest at the G(2)/M border in various cell types. Although the activation of JNK kinase has been implicated in BRCA1-induced apoptosis, the role of other members of the mitogen-activated protein kinase family in mediating the cellular response to BRCA1 has not yet been examined. In this study, we monitored the activities of three members of the MAPK family (ERK1/2, JNK, p38) in MCF-7 breast cancer cells and U2OS osteosarcoma cells after their exposure to a recombinant adenovirus expressing wild type BRCA1 (Ad.BRCA1). Overexpression of BRCA1 in MCF-7 cells resulted in arrest at the G(2)/M border; however, BRCA1 expression in U2OS cells induced apoptosis. Although BRCA1 induced JNK activation in both cell lines, there were marked differences in ERK1/2 activation in response to BRCA1 expression in these two cell lines. BRCA1-induced apoptosis in U2OS cells was associated with no activation of ERK1/2. In contrast, BRCA1 expression in MCF-7 cells resulted in the activation of both ERK1/2 and JNK. To directly assess the role of ERK1/2 in determining the cellular response to BRCA1, we used dominant negative mutants of MEK1 as well as MEK1/2 inhibitor PD98059. Our results indicate that inhibition of ERK1/2 activation resulted in increased apoptosis after BRCA1 expression in MCF-7 cells. Furthermore, BRCA1-induced apoptosis involved activation of JNK, induction of Fas-L/Fas interaction, and activation of caspases 8 and 9. The studies presented in this report indicate that the response to BRCA1 expression is determined by the regulation of both the JNK and ERK1/2 signaling pathways in cells.  相似文献   

16.
ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.  相似文献   

17.
6-Formylindolo(3,2-b)carbazole (FICZ) is a photoproduct of tryptophan and an endogenous high affinity ligand for aryl hydrocarbon receptor (AhR). It was previously reported that, in patient-derived HL-60 myeloblastic leukemia cells, retinoic acid (RA)-induced differentiation is driven by a signalsome containing c-Cbl and AhR. FICZ enhances RA-induced differentiation, assessed by expression of the membrane differentiation markers CD38 and CD11b, cell cycle arrest and the functional differentiation marker, inducible oxidative metabolism. Moreover, FICZ augments the expression of a number of the members of the RA-induced signalsome, such as c-Cbl, Vav1, Slp76, PI3K, and the Src family kinases Fgr and Lyn. Pursuing the molecular signaling responsible for RA-induced differentiation, we characterized, using FRET and clustering analysis, associations of key molecules thought to drive differentiation. Here we report that, assayed by FRET, AhR interacts with c-Cbl upon FICZ plus RA-induced differentiation, whereas AhR constitutively interacts with Cbl-b. Moreover, correlation analysis based on the flow cytometric assessment of differentiation markers and western blot detection of signaling factors reveal that Cbl-b, p-p38α and pT390-GSK3β, are not correlated with other known RA-induced signaling components or with a phenotypic outcome. We note that FICZ plus RA elicited signaling responses that were not typical of RA alone, but may represent alternative differentiation-driving pathways. In clusters of signaling molecules seminal to cell differentiation, FICZ co-administered with RA augments type and intensity of the dynamic changes induced by RA. Our data suggest relevance for FICZ in differentiation-induction therapy. The mechanism of action includes modulation of a SFK and MAPK centered signalsome and c-Cbl-AhR association.  相似文献   

18.
The ERK cascade is activated by hormones, cytokines, and growth factors that result in either proliferation or growth arrest depending on the duration and intensity of the ERK activation. Here we provide evidence that the MEK1/ERK module preferentially provides proliferative signals, whereas the MEK2/ERK module induces growth arrest at the G1/S boundary. Depletion of either MEK subtype by RNA interference generated a unique phenotype. The MEK1 knock down led to p21cip1 induction and to the appearance of cells with a senescence-like phenotype. Permanent ablation of MEK1 resulted in reduced colony formation potential, indicating the importance of MEK1 for long term proliferation and survival. MEK2 deficiency, in contrast, was accompanied by a massive induction of cyclin D expression and, thus, CDK4/6 activation followed by nucleophosmin hyperphosphorylation and centrosome over-amplification. Our results suggest that the two MEK subtypes have distinct ways to contribute to a regulated ERK activity and cell cycle progression.  相似文献   

19.
The RAS-activated RAF-->MEK-->extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3'-kinase (PI3'-kinase)-->PDK1-->AKT signaling pathways are believed to cooperate to promote the proliferation of normal cells and the aberrant proliferation of cancer cells. To explore the mechanisms that underlie such cooperation, we have derived cells harboring conditionally active, steroid hormone-regulated forms of RAF and AKT. These cells permit the assessment of the biological and biochemical effects of activation of these protein kinases either alone or in combination with one another. Under conditions where activation of neither RAF nor AKT alone promoted S-phase progression, coactivation of both kinases elicited a robust proliferative response. Moreover, under conditions where high-level activation of RAF induced G(1) cell cycle arrest, activation of AKT bypassed the arrest and promoted S-phase progression. At the level of the cell cycle machinery, RAF and AKT cooperated to induce cyclin D1 and repress p27(Kip1) expression. Repression of p27(Kip1) was accompanied by a dramatic reduction in KIP1 mRNA and was observed in primary mouse embryo fibroblasts derived from mice either lacking SKP2 or expressing a T187A mutated form of p27(Kip1). Consistent with these observations, pharmacological inhibition of MEK or PI3'-kinase inhibited the effects of activated RAS on the expression of p27(Kip1) in NIH 3T3 fibroblasts and in a panel of bona fide human pancreatic cancer cell lines. Furthermore, we demonstrated that AKT activation led to sustained activation of cyclin/cdk2 complexes that occurred concomitantly with the removal of RAF-induced p21(Cip1) from cyclin E/cdk2 complexes. Cumulatively, these data strongly suggest that the RAF-->MEK-->ERK and PI3'K-->PDK-->AKT signaling pathways can cooperate to promote G(0)-->G(1)-->S-phase cell cycle progression in both normal and cancer cells.  相似文献   

20.
Activation of cyclin B-Cdc2 is an absolute requirement for entry into mitosis, but other protein kinase pathways that also have mitotic functions are activated during G(2)/M progression. The MAPK cascade has well established roles in entry and exit from mitosis in Xenopus, but relatively little is known about the regulation and function of this pathway in mammalian mitosis. Here we report a detailed analysis of the activity of all components of the Ras/Raf/MEK/ERK pathway in HeLa cells during normal G(2)/M. The focus of this pathway is the dramatic activation of an endomembrane-associated MEK1 without the corresponding activation of the MEK substrate ERK. This is because of the uncoupling of MEK1 activation from ERK activation. The mechanism of this uncoupling involves the cyclin B-Cdc2-dependent proteolytic cleavage of the N-terminal ERK-binding domain of MEK1 and the phosphorylation of Thr(286). These results demonstrate that cyclin B-Cdc2 activity regulates signaling through the MAPK pathway in mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号