首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of fructoselysine (FL) in glycated (nonenzymatically glycosylated) proteins in vitro and has also been detected in human tissues and urine [Ahmed et al. (1986) J. Biol. Chem. 261, 4889-4894]. In this study, we compare the amounts of CML and FL in normal human lens proteins, aged 0-79 years, using specific and sensitive assays based on selected ion monitoring gas chromatography-mass spectrometry. Our results indicate that the lens content of FL increases significantly between infancy and about age 5 but that there is only a slight, statistically insignificant increase in FL between age 5 and 80 (mean +/- SD = 1.4 +/- 0.4 mmol of FL/mol of Lys). In contrast, the lens content of the oxidation product, CML, increased linearly with age, ranging from trace levels at infancy up to 8 mmol of CML/mol of lysine at age 79. The ratio of CML to FL also increased linearly from 0.5 to 5 mol of CML/mol of FL between age 1 and 79, respectively. These results indicate that CML, rather than FL, is the major product of glycation detectable in adult human lens protein. The age-dependent accumulation of CML in lens protein indicates that products of both glycation and oxidation accumulate in the lens with age, while the constant rate of accumulation of CML in lens with age argues against an age-dependent decline in free radical defense mechanisms in this tissue.  相似文献   

2.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of glucose adducts to protein in vitro and has been detected in human tissue proteins and urine [Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894; Dunn, J. A., Patrick, J. S., Thorpe, S. R., & Baynes, J. W. (1989) Biochemistry 28, 9464-9468]. In the present study we show that CML is also formed in reactions between ascorbate and lysine residues in model compounds and protein in vitro. The formation of CML from ascorbate and lysine proceeds spontaneously at physiological pH and temperature under air. Kinetic studies indicate that oxidation of ascorbic acid to dehydroascorbate is required. Threose and N epsilon-threuloselysine, the Amadori adduct of threose to lysine, were identified in the ascorbate reaction mixtures, suggesting that CML was formed by oxidative cleavage of N epsilon-threuloselysine. Support for this mechanism was obtained by identifying CML as a product of reaction between threose and lysine and by analysis of the relative rates of formation of threuloselysine and CML in reactions of ascorbate or threose with lysine. The detection of CML as a product of reaction of ascorbate and threose with lysine suggests that other sugars, in addition to glucose, may be sources of CML in proteins in vivo. The proposed mechanism for formation of CML from ascorbate is an example of autoxidative glycosylation of protein and suggests that CML may also be an indicator of autoxidative glycosylation of proteins in vivo.  相似文献   

3.
Since the accumulation of Nε-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.  相似文献   

4.
The autoxidation of ascorbic acid (ASA) leads to the formation of compounds which are capable of glycating and crosslinking proteins in vitro. When the soluble crystallins from bovine lens were incubated with ASA in the presence of sodium cyanoborohydride, a single major adduct was observed, whose appearance correlated with the loss of lysine. When polylysine was reacted with equivalent amounts of ASA under the same conditions, this product represented half of the total lysine content after four weeks of incubation at 37 degrees C. This adduct was isolated and identified as N epsilon-(carboxymethyl)lysine (CML) by TLC, GC/MS and amino acid analysis. Several oxidation products of ASA were each reacted with polylysine in the presence of sodium cyanoborohydride to identify the reactive species. CML was the major adduct formed with either ASA and dehydroascorbic acid (DHA). Markedly diminished amounts were seen with L-2,3-diketogulonic acid (DKG), and L-threose, while no CML was formed with L-threo-pentos-2-ulose (L-xylosone). In the absence of sodium cyanoborohydride the yield of CML was similar with each of the ASA autoxidation products and required oxygen. Reactions with [1-14C]ASA gave rise to [14C]CML, but only with NaCNBH3 present. At least two routes of CML formation appear to be operating depending upon whether NaCNBH3 is present to reduce the putative Schiff base formed between lysine and DHA.  相似文献   

5.
Levels of glycation (fructose-lysine, FL) and advanced glycoxidation and lipoxidation end-products (AGE/ALEs) were measured in total skeletal (gastrocnemius) muscle and myofibril protein and compared to levels of the same compounds in insoluble skin collagen of control and diabetic rats. Levels of FL in total muscle and myofibril protein were 3-5% the level of FL in skin collagen. The AGE/ALEs, N(epsilon)-(carboxymethyl)lysine (CML) and N(epsilon)-(carboxyethyl)lysine, were also significantly lower in total muscle and myofibril protein, approximately 25% of levels in skin collagen. The newly described sulfhydryl AGE/ALE, S-(carboxymethyl)cysteine (CMC), was also measured in muscle; levels of CMC were comparable to those of CML and increased similarly in response to diabetes. Although FL and AGE/ALEs increased in muscle protein in diabetes, the relative increase was less than that seen in skin collagen. These data indicate that muscle protein is partially protected against the increase in both glycation and AGE/ALE formation in diabetes.  相似文献   

6.
Since the accumulation of Nε-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.  相似文献   

7.
The chemistry of Maillard or browning reactions of glycated proteins was studied using the model compound, N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in protein. Incubation of fFL (15 mM) at physiological pH and temperature in 0.2 M phosphate buffer resulted in formation of N epsilon-carboxymethyllysine (CML) in about 40% yield after 15 days. CML was formed by oxidative cleavage of fFL between C-2 and C-3 of the carbohydrate chain and erythronic acid (EA) was identified as the split product formed in the reaction. Neither CML nor EA was formed from fFL under a nitrogen atmosphere. The rate of formation of CML was dependent on phosphate concentration in the incubation mixture and the reaction was shown to occur by a free radical mechanism. CML was also identified by amino acid analysis in hydrolysates of both poly-L-lysine and bovine pancreatic ribonuclease glycated in phosphate buffer under air. CML was also detected in human lens proteins and tissue collagens by HPLC and the identification was confirmed by gas chromatography/mass spectroscopy. The presence of both CML and EA in human urine suggests that they are formed by degradation of glycated proteins in vivo. The browning of fFL incubation mixtures proceeded to a greater extent under a nitrogen versus an air atmosphere, suggesting that oxidative degradation of Amadori adducts to form CML may limit the browning reactions of glycated proteins. Since the reaction products, CML and EA, are relatively inert, both chemically and metabolically, oxidative cleavage of Amadori adducts may have a role in limiting the consequences of protein glycation in the body.  相似文献   

8.
The chemistry of Maillard or browning reactions of glycated proteins is being studied in model systems in vitro in order to characterize potential reaction pathways and products in biological systems. In previous work with the Amadori rearrangement product N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in proteins, we showed that fFL was oxidatively cleaved between C-2 and C-3 of the carbohydrate chain to yield N epsilon-carboxymethyllysine (CML) and D-erythronic acid. We then detected CML in proteins glycated in vitro, as well as in human lens proteins and collagen in vivo (Ahmed, M. U., Thorpe, S. R., and Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894). This work provided an explanation for the origin of CML in human urine and evidence for non-browning pathways of the Maillard reaction in vivo. In this report we describe the identification of a second set of products resulting from oxidative cleavage of fFL between C-3 and C-4 of the sugar chain, i.e. 3-(N epsilon-lysino)-lactic acid (LL) and D-glyceric acid. The formation of LL from fFL was increased at slightly acid pH, representing about 30% of the yield of CML at pH 6.4, compared with 4% at pH 7.4 in phosphate buffer. By gas chromatography-mass spectroscopy, LL was detected in proteins glycated in vitro and then identified as a natural product in human lens proteins and urine. Our results indicate that oxidative degradation of Amadori adducts to proteins occurs in vivo, leading to formation and excretion of CML and LL. These non-browning pathways for reaction of Amadori compounds may be physiologically relevant mechanisms for averting potentially damaging consequences of the Maillard reaction.  相似文献   

9.
Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases.  相似文献   

10.
N(epsilon)-(carboxymethyl)lysine (CML) is an advanced glycation end product formed by non-enzymatic glycation and oxidation of proteins. The distribution pattern of CML-modified proteins in normal and osteoarthritic (OA) cartilage was investigated using specific antibodies. In healthy articular cartilage, immunoreactivity for CML was preferably found in the extracellular matrix (ECM) of the superficial layer. In OA samples, CML immunoreactivity was not restricted to the ECM of the superficial layer. Interestingly, OA chondrocytes showed a remarkable cytoplasmic immunoreactivity for CML. With the help of a western blot analysis CML-modified proteins between 68 and 39 kDa could be demonstrated in OA cartilage samples. These results suggest that the accumulation of CML adducts contributes to the matrix damage in osteoarthritis. Therefore, the inhibition of CML accumulation may represent an effective therapeutic strategy to prevent severe OA cartilage injury.  相似文献   

11.
We propose a specific, reproducible and sensitive HPLC method for the determination of N(epsilon)-(carboxymethyl)lysine (CML) excreted in urine. Total CML was measured in acid hydrolysates of urine samples, while free CML was measured in acetonitrile-deproteinised urine samples using a RP-HPLC method with ortho-phtaldialdehyde (OPA)-derivatisation and fluorescence detection suited for automation. We compared the CML excretion of 51 non-proteinuric patients with diabetes mellitus (DM) (age 57+/-14 years, HbA1c 8.0+/-1.8%) to 42 non-diabetic controls (C) (age 45+/-17 years). The urinary excretion of total CML in diabetic patients was increased by approximately 30% (DM: 0.58+/-0.21; C: 0.45+/-0.14 microM/mmol creatinine; P<0.001). While urinary excretion of free CML was not significantly different, excretion of bound CML was increased (DM: 0.36+/-0.17; C: 0.27+/-0.14; P<0.05) in diabetic patients. CML excretion was correlated with protein and albumin excretion, but did not correlate with HbA1c, duration of DM or diabetic complications such as neuropathy or retinopathy. Furthermore, no age-dependent change of total CML excretion was found, while free CML excretion was lower in younger subjects. The specific and sensitive determination of CML by RP-HPLC of its OPA-derivative is well suited for automation and better than that of less defined glycoxidation products (AGEs).  相似文献   

12.
N -(carboxymethyl)lysine, an advanced glycation end product, is present in the human lens. The effects of CML formation on protein conformation and stability were studied using the recombinant C-crystallin as a model. Conformational change was studied by spectroscopic measurements such as fluorescence and circular dichroism. Conformational stability was determined by unfolding with heat. The results indicated that no conformational change was observed due to CML formation, but conformational stability decreased. These observations can be explained in terms of the relatively stable structure of -crystallin, especially when compared with other crystallins. The lens nucleus is rich in -crystallin and its stable conformation can assist -crystallin sustained insults and remain soluble.  相似文献   

13.
N epsilon-(gamma-Glutamyl)-lysine isodipeptide was detected in a protein-free fraction of Chinese-hamster ovary cells and their culture fluid by using radioactive lysine as a tracer. The identity of the isodipeptide was established by its separation on ion-exchange chromatography, analysis by h.p.l.c. after derivatization, recovery of lysine after acidic hydrolysis or after cleavage by a specific enzyme, namely gamma-glutamylamine cyclotransferase. The amount of isodipeptide was raised (460 pmol/10(7) cells and 61 pmol/ml of culture fluid were observed as highest values) as the cell density increased. Effects of inhibitors of intracellular protein degradation have shown that the isodipeptide derives from cross-linking N epsilon-(gamma-glutamyl)-lysine bonds formed by tissue transglutaminase. Estimated half-life values of cross-linked proteins were about 3 h. gamma-Glutamylamine cyclotransferase, which may split the isodipeptide formed during the continuous turnover of cross-linked proteins, was also found in Chinese-hamster ovary cells. Isodipeptide may have been accumulated when either its generated amount is beyond the capacity of gamma-glutamylamine cyclotransferase or it is generated in cell compartments where this enzyme is not present.  相似文献   

14.
Convenient methods for preparative synthesis of N epsilon-(2,3-dihydroxypropyl)-L-lysine and its phenylthiohydantoin derivative are described. The former compound was characterized by elemental analysis, melting point, and ion-exchange chromatography and the latter by elemental analysis, melting point, UV-spectrum, HPLC and thin-layer chromatography. This study was performed for investigations of lysine residues in proteins.  相似文献   

15.
The degradation of fructosamines, formed from the non-enzymic glycation of proteins under physiological conditions, to advanced glycation end products was investigated by studying the model peptide fructosamine N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine (DHL). At pH 7.4 and 37 degrees C in aerobic phosphate buffer, DHL degraded to form N epsilon-carboxymethyl-hippuryl-lysine, and hippuryl-lysine over a 29-day incubation period. The expected N epsilon-(3-lactato)hippuryl-lysine and 'hippuryl-lysylpyrraline' derivatives were not found. Superoxide radicals and hydrogen peroxide were formed during the degradation of DHL but were also both consumed during the degradation reaction. Reversal of the Amadori rearrangement was not a major fate of the fructosamine. The formation of N epsilon-carboxymethyl-hippuryl-lysine was decreased by desferrioxamine, catalase, superoxide dismutase, catalase with superoxide dismutase, anaerobic conditions and aminoguanidine. The formation of hippuryl-lysine was decreased by desferrioxamine, catalase and catalase with superoxide dismutase, but was increased by the addition of aminoguanidine. N epsilon-Carboxymethyl-serine and unmodified lysine residues are major peptide-based end products in the degradation of lysyl-fructosamine under physiological conditions. Oxygen, redox-active metal ions, catalase, superoxide dismutase and the pharmacological agent aminoguanidine are expected to be influential on the rate and fate of fructosamine degradation.  相似文献   

16.
Immunological strategies for the detection of N(epsilon)-(carboxymethyl)lysine (CML), one of the major antigenic structures of advanced glycation end products (AGE), are widely applied to demonstrate the contribution of CML to the pathogeneses of diabetic complications and atherosclerosis. Recent studies have indicated that methylglyoxal (MG), which is generated intracellularly through the Embden-Meyerhof and polyol pathways, reacts with proteins to form MG-derived AGE structures such as N(epsilon)-(carboxyethyl)lysine (CEL). In order to accurately measure the CML contents of the proteins by means of an immunochemical method, we prepared CML-specific antibodies since conventionally prepared polyclonal anti-CML antibody and monoclonal anti-CML antibody (6D12) cross-reacted with CEL. To prepare polyclonal CML-specific antibody, CML-keyhole limpet hemocyanin (CML-KLH) were immunized with rabbit and CEL-reactive antibody was removed by CEL-conjugated affinity chromatography. Monoclonal antibody specific for CML (CMS-10) was obtained by immunization with CML-KLH, followed by successive screening according to CML-bovine serum albumin (CML-BSA)-positive but CEL-BSA-negative criteria. Both polyclonal CML-specific antibody and CMS-10 significantly reacted with CML-proteins but not with CEL-proteins. It is likely therefore that these antibodies can recognize the difference of one methyl group between CML and CEL. Moreover, CMS-10 significantly reacted with BSA modified with several aldehydes and its reactivity was highly correlated with the CML content, which was determined by high performance liquid chromatography, whereas 6D12 showed a low correlation. These results indicate that CMS-10 can be used to determine the CML contents of modified proteins in a more specific way.  相似文献   

17.
The structural chromatin protein A24 (uH2A) is a conjugate of histone H2A and a non-histone protein, ubiquitin. Eukaryotic cells contain an enzyme, generically termed isopeptidase, which can cleave A24 stoichiometrically into H2A and ubiquitin in vitro. Isopeptidase, free of proteinase activity, has been partially purified from calf thymus by ion-exchange chromatography, gel filtration and affinity chromatography, and analyzed for its substate specificity. There are three major types of isopeptide bonds besides the epsilon-(alpha-glycyl)lysine bond between H2A and ubiquitin; namely, the disulfide bridge, the aldol and aldimide bonds and the epsilon-(gamma-glutamyl)lysine crosslink. Under conditions where A24 was completely cleaved into H2A and ubiquitin, none of these naturally occurring isopeptide bonds was cleaved by isopeptidase. Furthermore, the bonds formed in vitro by transglutaminase reaction between casein and putrescine, through the gamma-NH2 of glutamine residue and the NH2 of putrescine, were not cleaved by the enzyme. The enzyme also failed to cleave the glycyl-lysyl and other orthodox peptide linkages within proteins. Among various proteins examined, the substrates for isopeptidase reaction were confined to conjugates between ubiquitin and other proteins, formed through epsilon-(alpha-glycyl)lysine bonds. Since ubiquitin released by isopeptidase is re-usable for an ATP-dependent conjugation with other proteins, its carboxyl terminal -Gly-Gly-COOH most likely is preserved intact, and is not blocked. These results suggest that isopeptidase specifically recognizes and cleaves the epsilon-(alpha-glycyl)lysine bond. A possible biological significance of this enzyme is discussed.  相似文献   

18.
Conventional peritoneal dialysis fluids (PDFs) lead to formation of advanced glycation end-products (AGE) in the peritoneal membrane. In this study, we investigated in vitro the dependence of AGE formation on regular changes of PDFs, as performed during continuous ambulatory peritoneal dialysis (CAPD), and on the contribution of high glucose concentration versus glucose degradation products (GDPs). Under conditions similar to CAPD, protein glycating activity of a conventional single chamber bag PDF (CAPD 4.25%), two double chamber bag PDFs (CAPD Balance 4.25% and CAPD Bicarbonate 4.25%) and a sterile filtered control was measured in vitro by N(epsilon)-(carboxymethyl)lysine (CML) and imidazolones, two well characterized, physiologically relevant AGE structures. Regular changes of PDFs increased AGE formation (CML 3.3-fold and imidazolone 2.6-fold) compared to incubation without changes. AGE formation by CAPD 4.25% was increased compared to control (imidazolones 7.9-fold and CML 3.3-fold) and the use of double chamber bag PDFs led to a decrease of imidazolones by 79% (CAPD Bicarbonate 4.25%) and by 66% (CAPD Balance 4.25%) and to CML contents similar to the control. These results indicate that a major part of AGEs were formed by GDPs in PDFs, whereas only a minor part was due to high glucose concentration. The use of double chamber bag fluids can reduce AGE formation considerably.  相似文献   

19.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

20.
The chaperone-like activity of alpha-crystallin is considered to play an important role in the maintenance of the transparency of the eye lens. However, in the case of aging and in diabetes, the chaperone function of alpha-crystallin is compromized, resulting in cataract formation. Several post-translational modifications, including non-enzymatic glycation, have been shown to affect the chaperone function of alpha-crystallin in aging and in diabetes. A variety of agents have been identified as the predominant sources for the formation of AGEs (advanced glycation end-products) in various tissues, including the lens. Nevertheless, glycation of alpha-crystallin with various sugars has resulted in divergent results. In the present in vitro study, we have investigated the effect of glucose, fructose, G6P (glucose 6-phosphate) and MGO (methylglyoxal), which represent the major classes of glycating agents, on the structure and chaperone function of alpha-crystallin. Modification of alpha-crystallin with all four agents resulted in the formation of glycated protein, increased AGE fluorescence, protein cross-linking and HMM (high-molecular-mass) aggregation. Interestingly, these glycation-related profiles were found to vary with different glycating agents. For instance, CML [N(epsilon)-(carboxymethyl)lysine] was the predominant AGE formed upon glycation of alpha-crystallin with these agents. Although fructose and MGO caused significant conformational changes, there were no significant structural perturbations with glucose and G6P. With the exception of MGO modification, glycation with other sugars resulted in decreased chaperone activity in aggregation assays. However, modification with all four sugars led to the loss of chaperone activity as assessed using an enzyme inactivation assay. Glycation-induced loss of alpha-crystallin chaperone activity was associated with decreased hydrophobicity. Furthermore, alpha-crystallin isolated from glycated TSP (total lens soluble protein) had also increased AGE fluorescence, CML formation and diminished chaperone activity. These results indicate the susceptibility of alpha-crystallin to non-enzymatic glycation by various sugars and their derivatives, whose levels are elevated in diabetes. We also describe the effects of glycation on the structure and chaperone-like activity of alpha-crystallin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号