首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
Chloroplast fructose-1,6-bisphosphatase hysteresis in response to modifiers was uncovered by carrying out the enzyme assays in two consecutive steps. The activity of chloroplast fructose-1,6-bisphosphatase, assayed at low concentrations of both fructose-1,6-bisphosphatase and Mg2+, was enhanced by preincubating the enzyme with dithiothreitol, thioredoxin f, fructose 1,6-bisphosphate, and Ca2+. In the time-dependent activation process, fructose 1,6-bisphosphate and Ca2+ could be replaced by other sugar biphosphates and Mn2+, respectively. Once activated, chloroplast fructose-1,6-bisphosphatase hydrolyzed fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate in the presence of Mg2+, Mn2+, or Fe2+. The A0.5 for fructose 1,6-bisphosphate (activator) was lowered by reduced thioredoxin f and remained unchanged when Mg2+ was varied during the assay of activity. On the contrary, the S0.5 for fructose 1,6-bisphosphate (substrate) was unaffected by reduced thioredoxin f and depended on the concentration of Mg2+. Ca2+ played a dual role on the activity of chloroplast fructose-1,6-bisphosphatase; it was a component of the concerted activation and an inhibitor in the catalytic step. Provided dithiothreitol was present, the activating effectors were not required to maintain the enzyme in the active form. Considered together these results strongly suggest that the regulation of fructose-1,6-bisphosphatase in chloroplast occurs at two different levels, the activation of the enzyme and the catalysis.  相似文献   

2.
The aim of this paper is to study some steady-state kinetic properties of sedoheptulose-1,7-bisphosphatase, its pH-dependence and the effect of a substrate analogue, fructose 2,6-bisphosphate. Studies were carried out with sedoheptulose 1,7-bisphosphate and with fructose 1,6-bisphosphate, an alternative substrate. The pK values are identical for both substrates, and fructose 2,6-bisphosphate behaves like a competitive inhibitor. These results suggest that there exists a unique active site for either sedoheptulose 1,7-bisphosphate or fructose 1,6-bisphosphate on the enzyme molecule. Increasing Mg2+ concentrations shifted the optimum pH. As for fructose-1,6-bisphosphatase, we believe that this shift is due to the neutralization of negative charges near the active centre [Cadet, Meunier & Ferté (1987) Eur. J. Biochem. 162, 393-398]. The free species of sedoheptulose 1,7-bisphosphate and fructose 1,6-bisphosphate are not the usual substrates of enzyme, nor is Mg2+. But the kinetics relative to the (Mg2+-substrate4-)2- complex is not consistent with this complex being the substrate. An explanation of this discrepancy is proposed, involving both the negative charges near the active centre and the positive charges of Mg2+. The observed Vmax. of the reduced enzyme is 65% of the theoretical Vmax. for both substrates, but the observed Vmax. relative to sedoheptulose 1,7-bisphosphate is 3 times the one relative to fructose 1,6-bisphosphate. The specificity constant (kcat./Km), 1.62 x 10(6) M-1.s-1 with respect to sedoheptulose 1,7-bisphosphate compared with 5.5 x 10(4) M-1.s-1 with respect to fructose 1,6-bisphosphate, indicates that the enzyme specificity towards sedoheptulose 1,7-bisphosphate is high but not absolute.  相似文献   

3.
Conditions required for the reductive activation of purified, spinach chloroplast fructose-1,6-bisphosphatase (EC 3.1.3.11) have been determined in vitro. Full reductive activation was observed only when fructose-1,6-bisphosphate and Mg2+ were present at the same time as the reducing agent (dithiothreitol). Reduction in the absence either of fructose-1,6-bisphosphate or of Mg2+ slowly and irreversibly inactivated the enzyme. The concentration of fructose-1,6-bisphosphate that must be present during reduction for maximum activation depends upon the divalent cation present: it is highest with Mg2+, lower with Ca2+, and lowest when both Mg2+ and Ca2+ are present. A scheme for the reductive activation and inactivation of the enzyme is presented.  相似文献   

4.
Using partially purified sedoheptulose-1,7-bisphosphatase from spinach (Spinacia oleracea L.) chloroplasts the effects of metabolites on the dithiothreitoland Mg2+-activated enzyme were investigated. A screening of most of the intermediates of the Calvin cycle and the photorespiratory pathway showed that physiological concentrations of sedoheptulose-7-phosphate and glycerate specifically inhibited the enzyme by decreasing its maximal velocity. An inhibition by ribulose-1,5-bisphosphate was also found. The inhibitory effect of sedoheptulose-7-phosphate on the enzyme is discussed in terms of allowing a control of sedoheptulose-1,7-bisphosphate hydrolysis by the demand of the product of this reaction. Subsequent studies with partially purified fructose-1,6-bisphosphatase from spinach chloroplasts showed that glycerate also inhibited this enzyme. With isolated chloroplasts, glycerate was found to inhibit CO2 fixation by blocking the stromal fructose-1,6-bisphosphatase. It is therefore possible that the inhibition of the two phosphatases by glycerate is an important regulatory factor for adjusting the activity of the Calvin cycle to the ATP supply by the light reaction.Abbreviations DTT dithiothreitol - FBPase fructose-1,6-bisphosphatase - Fru-1,6-P2 fructose-1,6-bisphosphate - Fru-6-P fructose-6-phosphate - 3-PGA 3-phosphoglycerate - Ru-1,5-P2 ribulose-1,5-bisphosphate - Ru-5-P ribulose-5-phosphate - SBPase sedoheptulose-1,7-bisphosphatase - Sed-1,7-P2 sedoheptulose-1,7-bisphosphate - Sed-7-P sedoheptulose-7-phosphate This work was supported by the Deutsche Forschungsgemein-schaft.  相似文献   

5.
Cytosolic fructose-1,6-bisphosphatase from spinach (Spinacia oleracea L.) leaves was purified over 1700-fold. The final preparation was specific for fructose-1,6-bisphosphate in the presence of either Mg2+ or Mn2+, and was free of interfering enzyme activities. Ca2+ was an effector of fructose-1,6-bisphosphatase activity, and showed different kinetics, depending on whether Mg2+ or Mn2+ was used as cofactor. In the presence of 5 millimolar Mg2+, Ca2+ appeared as activator or as inhibitor of the enzyme at low or high levels of substrate, respectively. In both cases, a rise in affinity for fructose-1,6-bisphosphate was observed. A model is proposed to describe the complex interaction of fructose-1,6-bisphosphatase with its substrate and Ca2+. However, with Mn2+ (60 micromolar) as cofactor, Ca2+ exhibited the Michaelis-Menten kinetics of a noncompetitive inhibitor. When assayed at constant substrate concentration, Ca2+ behaves as a competitive or noncompetitive inhibitor, depending on the use of Mg2+ or Mn2+ as cofactor, respectively, with a positive cooperativity in both cases. Fructose-2,6-bisphosphate showed a classic competitive allosteric inhibition in the presence of Mg2+ as cofactor, but this effect was low with Mn2+. From these results we suggest that Ca2+ plays a role in the in vivo regulation of cytosolic fructose-1,6-bisphosphatase.  相似文献   

6.
Ian E. Woodrow  Keith A. Mott 《Planta》1993,191(4):421-432
A model of the C 3 photosynthetic system is developed which describes the sensitivity of the steadystate rate of carbon dioxide assimilation to changes in the activity of several enzymes of the system. The model requires measurements of the steady-state rate of carbon dioxide assimilation, the concentrations of several intermediates in the photosynthetic system, and the concentration of the active site of ribulose 1,5-bisphosphate carboxyalse/oxygenase (Rubisco). It is shown that in sunflowers (Helianthus annuus L.) at photon flux densities that are largely saturating for the rate of photosynthesis, the steady-stete rate of carbon dioxide assimilation is most sensitive to Rubisco activity and, to a lesser degree, to the activities of the stromal fructose, 6-bisphosphatase and the enzymes catalysing sucrose synthesis. The activities of sedoheptulose 1,7-bisphosphatase, ribulose 5-phosphate kinase, ATP synthase and the ADP-glucose pyrophosphorylase are calculated to have a negligible effect on the flux under the high-light conditions. The utility of this analysis in developing simpler models of photosynthesis is also discussed.Abbreviations c i intercellular CO2 concentration - C infP supJ control coefficient for enzyme P with respect to flux J - DHAP dihydroxyacetonephosphate - E4P erythrose 4-phosphate - F6P fructose 6-phosphate - FBP fructose 1,6-bisphosphate - FBPase fructose 1,6-bisphosphatase - G3P glyceraldehyde 3-phosphate - G1P glucose 1-phosphate - G6P glucose 6-phosphate - Pi inorganic phosphate - PCR photosynthetic carbon reduction - PGA 3-phosphoglyceric acid - PPFD photosynthetically active photon flux density - R n J response coefficient for effector n with respect to flux J - R5P ribose 5-phosphate - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - Ru5P ribulose 5-phosphate - RuBP ribulose 1,5-bisphosphate - S7P sedoheptulose 7-phosphate - SBP sedoheptulose 1,7-bisphosphate - SBPase sedoheptulose 1,7-bisphosphatase - SPS sucrose-phosphate synthase - Xu5P xylulose 5-phosphate - n P elasticity coefficient for effector n with respect to the catalytic velocity of enzyme P This research was funded by an Australian Research Council grant to I.E.W. and was undertaken during a visity by K.A.M. to the James Cook University of North Queensland. The expert help of Glenys Hanley and Mick Kelly is greatly appreciated.  相似文献   

7.
The effect of pH and of Mg2+ concentration on the light activated form of stromal fructose-1,6-bisphosphatase (FBPase) was studied using the enzyme rapidly extracted from illuminated spinach chloroplasts. The (fructose-1,6-bisphosphate4-)(Mg2+) complex has been identified as the substrate of the enzyme. Therefore, changes of pH and Mg2+ concentrations have an immediate effect on the activity of FBPase by shifting the pH and Mg2+ dependent equilibrium concentration of the substrate. In addition, changes of pH and Mg2+ concentration in the assay medium have a delayed effect on FBPase activity. A correlation of the activities observed using different pH and Mg2+ concentrations indicates, that the effect is not a consequence of the pH and Mg2+ concentration as such, but is caused by a shift in the equilibrium concentration of a hypothetical inhibitor fructose-1,6-bisphosphate3- (uncomplexed), resulting in a change of the activation state of the enzyme. The interplay between a rapid effect on the concentration of the substrate and a delayed effect on the activation state enables a rigid control of stromal FBPase by stromal Mg2+ concentrations and pH. Fructose-1,6-bisphosphatase is allosterically inhibited by fructose-6-phosphate in a sigmoidal fashion, allowing a fine control of the enzyme by its product.Abbreviations Fru1,6 bis P fructose-1,6-bisphosphate - Fru6P fructose-6-phosphate - FBPase fructose-1,6-bisphosphatase Some of these results have been included in a preliminary report (Heldt et al. 1984)  相似文献   

8.
The substrate specificity of purified fructose bisphosphatase form B from Synechococcus leopoliensis (EC 3.1.3.11; cf. K-P Gerbling, M Steup, E Latzko 1985 Eur J Biochem 147: 207-215) has been investigated. Of the phosphate esters tested only fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate were hydrolyzed by the enzyme. Both sugar bisphosphates were cleaved at the carbon 1-ester. Fructose- and sedoheptulose bisphosphate stabilized the activated (i.e. tetrameric) state of the enzyme and prevented a slow inactivation that is observed in the absence of sugar bisphosphates. With the activated enzyme, kinetic constants (half-saturating substrate concentrations, maximal reaction velocity, and the catalytical constant) were similar for both fructose- and sedoheptulose bisphosphate. The data suggest that fructose bisphosphatase form B from Synechococcus leopoliensis can catalyze both bisphosphatase reactions within the reductive pentose phosphate cycle.  相似文献   

9.
In chloroplasts, the light-modulated fructose-1,6-bisphosphatase catalyzes the formation of fructose 6-bisphosphate for the photosynthetic assimilation of CO2 and the biosynthesis of starch. We report here the construction of a plasmid for the production of chloroplast fructose-1,6-bisphosphatase in a bacterial system and the subsequent purification to homogeneity of the genetically engineered enzyme. To this end, a DNA sequence that coded for chloroplast fructose-1,6-bisphosphatase of rapeseed (Brassica napus) leaves was successively amplified by PCR, ligated into the Ndel/EcoRI restriction site of the expression vector pET22b, and introduced into Escherichia coli cells. When gene expression was induced by isopropyl--d-thiogalactopyranoside, supernatants of cell lysates were extremely active in the hydrolysis of fructose 1,6-bisphosphate. Partitioning bacterial soluble proteins by ammonium sulfate followed by anion exchange chromatography yielded 10 mg of homogeneous enzyme per 1 of culture. Congruent with a preparation devoid of contaminating proteins, the Edman degradation evinced an unique N-terminal amino acid sequence [A-V-A-A-D-A-T-A-E-T-K-P-]. Gel filtration experiments and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the (recombinant) rapeseed chloroplast fructose-1,6-bisphosphatases was a tetramer [160 kDa] comprised of four identical subunits. Like other chloroplast fructose-1,6-bisphosphatases, the recombinant enzyme was inactive at 1 mM fructose 1,6-bisphosphate and 1 mM Mg2+ but became fully active after an incubation in the presence of either 10 mM dithiothreitol or 1 mM dithiothreitol and chloroplast thioredoxin. However, at variance with counterparts isolated from higher plant leaves, the low activity observed in absence of reductants was not greatly enhanced by high concentrations of fructose 1,6-bisphosphate (3 mM) and Mg2+ (10 mM). In the catalytic process, all chloroplast fructose-1,6-bisphosphatases had identical features; viz., the requirement of Mg2+ as cofactor and the inhibition by Ca2+. Thus, the procedure described here should prove useful for the structural and kinetic analysis of rapeseed chloroplast fructose-1,6-bisphosphatase in view that this enzyme was not isolated from leaves.Abbreviation DTT dithiothreitol - PCR polymerase chain reaction - EDTA (ethylenedinitrilo)tetraacetic  相似文献   

10.
A.M. El-Badry 《BBA》1974,333(2):366-377
Hexosediphosphatase (d-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been isolated, purified, and crystallized, from previously isolated spinach chloroplasts. The effects of various anions, cations, and sulfhydryl compounds were tested, and activation by Mg2+, glycine, HCO3?, and sulfhydryl compounds is described. The purified enzyme is very specific for fructose 1,6-diphosphate and does not attack sedoheptulose-1,7-bisphosphate. The s20 value of the enzyme was 7.7, from which the molecular weight of the enzyme was estimated as 140 000.  相似文献   

11.
The activation and steady-state kinetics of wheat chloroplast sedoheptulose-1,7-bisphosphatase at several concentrations of inorganic phosphate are examined. Inorganic phosphate competitively inhibits substrate binding to both the active and inactive forms of the enzyme and reduces the rate of enzyme activation. Modulation of the apparent Km of sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase for their substrates by inorganic phosphate is discussed in terms of the control of intermediate pool sizes in the reductive pentose phosphate pathway and of the flux of fixed carbon towards starch synthesis or export from the chloroplast.  相似文献   

12.
The activity of ribulose 1,5-bisphosphate (RuBP) car?ylase in intact spinach chloroplasts is shown to depend on light and CO2. This activity was measured upon lysis of chloroplasts and assay of the initial activity using nonlimiting substrate concentrations. Incubation of chloroplasts at 25 °C in the absence of CO2 results in a gradual inactivation of the RuBP car?ylase. In the presence of CO2 the initial activity is preserved or increased. CO2 is also able to reactivate the chloroplast car?ylase previously inactivated in the absence of CO2. Upon illumination of the chloroplasts, additional activation was observed. This light activation results from an increased affinity for CO2 of the chloroplast car?ylase. At pH 7.8, the enzyme in dark-adapted chloroplasts required 112 μ m CO2 for half activation, while in the light it required 24 μ m CO2. The light activation was inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea, carbonylcyanide 3-chlorophenylhydrazone, or dl-glyceraldehyde. Part of the light activation is most likely due to increased Mg2+ in the stroma. dl-Glyceraldehyde inhibition also suggests that some intermediate of the photosynthetic carbon cycle is involved. These results suggest that photosynthetic CO2 assimilation in the chloroplast depends upon the amount of activation of the RuBP car?ylase. This activation is regulated by CO2 and light-induced changes in the chloroplast stroma such as pH, Mg2+, and intermediates of the photosynthetic carbon cycle.  相似文献   

13.
Higher-plant sedoheptulose-1,7-bisphosphatase was isolated and purified over 200-fold from spinach (Spinacia oleracea) chloroplast stromal extracts to apparent electrophoretic homogeneity by DEAE-Fractogel, molecular sieving on Sephadex G-200 and Blue B dye-matrix affinity chromatography. It is a protein of Mr 66,000, made up of two apparently identical subunits (Mr 35,000). The enzyme is activated by reduced thioredoxin fb in the presence of dithiothreitol. Its specificity towards sedoheptulose 1,7-bisphosphate versus fructose 1,6-bisphosphate is high, but not absolute.  相似文献   

14.
  • 1.1. Purified ostrich (Struthio camelus) liver fructose-1,6-bisphosphatase exhibited an absolute requirement for Mg2+.
  • 2.2. The enzyme catalyzed the hydrolysis of fructose-1,6-bisphosphate, sedoheptulose-l,7-bisphosphate and ribulose-l,5-bisphosphate.
  • 3.3. S0.5 for substrate was 1.4 μM.
  • 4.4. AMP was a potent non-competitive inhibitor with respect to substrate (Ki of 25 μM).
  • 5.5. Fructose-2,6-bisphosphate was a potent competitive inhibitor of the enzyme (Ki of 4.8 μM).
  相似文献   

15.
How fructose 2,6-bisphosphate and metabolic intermediates interact to regulate the activity of the cytosolic fructose 1,6-bisphosphatase in vitro has been investigated. Mg2+ is required as an activator. There is a wide pH optimum, especially at high Mg2+. The substrate dependence is not markedly pH dependent. High concentrations of Mg2+ and fructose 1,6-bisphosphate are inhibitory, especially at higher pH. Fructose 2,6-bisphosphate inhibits over a wide range of pH values. It acts by lowering the maximal activity and lowering the affinity for fructose 1,6-bisphosphate, for which sigmoidal saturation kinetics are induced, but the Mg2+ dependence is not markedly altered. On its own, adenosine monophosphate inhibits competitively to Mg2+ and noncompetitively to fructose 1,6-bisphosphate. In the presence of fructose 2,6-bisphosphate, adenosine monophosphate inhibits in a fructose 1,6-bisphosphate-dependent manner. In the presence of adenosine monophosphate, fructose 2,6-bisphosphate inhibits in Mg2+-dependent manner. Fructose 6-phosphate and phosphate both inhibit competitively to fructose 1,6-bisphosphate. Fructose 2,6-bisphosphate does not affect the inhibition by phosphate, but weakens inhibition by fructose 6-phosphate. Dihydroxyacetone phosphate and hydroxypyruvate inhibit noncompetitively to fructose 1,6-bisphosphate and to Mg2+, but both act as activators in the presence of fructose 2,6-bisphosphate by decreasing the S0.5 for fructose 1,6-bisphosphate. A model is proposed to account for the interaction between these effectors.  相似文献   

16.
The mechanisms regulating transient photosynthesis by soybean (Glycine max) leaves were examined by comparing photosynthetic rates and carbon reduction cycle enzyme activities under flashing (saturating 1 s lightflecks separated by low photon flux density (PFD) periods of different durations) and continuous PFD. At the same mean PFD, the mean photosynthetic rates were reduced under flashing as compared to continuous light. However, as the duration of the low PFD period lengthened, the CO2 assimilation attributable to a lightfleck increased. This enhanced lightfleck CO2 assimilation was accounted for by a greater postillumination CO2 fixation occurring after the lightfleck. The induction state of photosynthesis, ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco), fructose 1,6-bisphosphatase (FBPase) and ribulose 5-phosphate kinase (Ru5P kinase) activities all responded similarly and were all lower under flashing as compared to constant PFD of the same integrated mean value. However, the fast phase of induction and FBPase and Ru5P kinase activities were reduced more than were the slow phase of induction and rubisco activity. This was consistent with the role of the former enzymes in the fast induction component that limited RuBP regeneration. Competition for reducing power between carbon metabolism and thioredoxin-mediated enzyme activation may have resulted in lower enzyme activation states and hence lower induction states under flashing than continuous PFD, especially at low lightfleck frequencies (low mean PFD).Abbreviations FBPase fructose 1,6-bisphosphatase (EC 3.1.3.11) - LUE lightfleck use efficiency - P-glycerate 3-phosphoglycerate - PICF post-illumination CO2 fixation - Ru5P kinase ribulose 5-phosphate kinase (EC 2.7.1.19) - RuBP ribulose 1,5-bisphosphate - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39) - SBpase sedoheptulose 1,7-bisphosphatase (EC 3.1.3.37)  相似文献   

17.
Photosynthetic carbon fixation is regulated in the chloroplast by the amount of ribulose 1,5-bisphosphate carboxylase which is activated. The activated carboxylase was preserved in detached leaves (barley, maize, soybean, spinach, wheat) for 90 min when stored on ice. With leaf extracts stored at 2°C, the amount of activated enzyme, representing that originally in the leaf, as well as the fully activated enzyme, formed by incubation of leaf extracts with Mg2+ and bicarbonate, both slowly declined in activity. However, for each activity this decline was proportional such that the ratio (percent activation) appeared constant. No change was observed in activation of the enzyme during the brief time of leaf homogenization. Optimal conditions (Mg2+, incubation time) for measurement of leaf activation of ribulose bisphosphate carboxylase vary depending on the plant.  相似文献   

18.
Light-mediated activation of fructose-1,6-bisphosphatase (EC 3.1.3.11) in intact spinach chloroplasts (Spinacia oleracea L.) is enhanced in the presence of 10−5 molar external free Ca2+. The most pronounced effect is observed during the first minutes of illumination. Ruthenium red, an inhibitor of light-induced Ca2+ influx, inhibits this Ca2+ stimulated activation. In isolated stromal preparations, the activation of fructose-1,6-bisphosphatase is already enhanced by 2 minutes of exposure to elevated Ca2+ concentrations in the presence of physiological concentrations of Mg2+ and fructose-1,6-bisphosphate. Maximal activation of the enzyme is achieved between 0.34 and 0.51 millimolar Ca2+. The Ca2+ mediated activation decreases with increasing fructose-1,6-bisphosphate concentration and with increasing pH. The data are consistent with the proposal that the illumination of chloroplasts leads to a transient increase of free stromal Ca2+. In dark-kept chloroplasts the steady-state concentration of free stromal Ca2+ is 2.4 to 6.3 micromolar as determined by null point titration. These observations support our previous proposal that light-induced Ca2+ influx into chloroplasts does not only influence the cytosolic concentration of free Ca2+ but also regulates enzymatic processes inside the chloroplast.  相似文献   

19.
This report describes the effects of pH and fructose 2,6-bisphosphate (an analog of fructose 1,6-bisphosphate) on the activity of oxidized and reduced fructose-1,6-bisphosphatase from spinach chloroplasts. Studies were carried out with either fructose 1,6-bisphosphate, the usual substrate, or sedoheptulose 1,7-bisphosphate, an alternative substrate. The reduction of the oxidized enzyme is achieved by a thiol/disulfide interchange. The pK values relative to each redox form for the same substrate (either fructose 1,6-bisphosphate or sedoheptulose 1,7-bisphosphate) are identical, suggesting the same site for both substrates on the active molecule. The finding that the analog (fructose 2,6-bisphosphate) behaves like a competitive inhibitor for both substrates also favours this hypothesis. The inhibitory effect of this sugar is more important when the enzyme is reduced than when it is oxidized. The shift in the optimum pH observed when [Mg2+] was raised is interpreted as a conformational change of oxidized enzyme demonstrated by a change in fluorescence. The reduced and oxidized forms have the same theoretical rates relative to both substrates, but the reduced form has an observed Vmax which is 60% of the theoretical Vmax while that of the oxidized form is only 37% of the theoretical Vmax. The reduced enzyme appears more efficient than the oxidized one in catalysis.  相似文献   

20.
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpXC) and one on plasmid pBM19 (GlpXP), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpXC and glpXP from B. methanolicus. GlpXP and GlpXC share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn2+ ions and inhibited by Li+, but differed in terms of the kinetic parameters. GlpXC showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s−1 mM−1 and 14 ± 0.5 μM, respectively) than GlpXP (8.8 s−1 mM−1 and 440 ± 7.6 μM, respectively), indicating that GlpXC is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpXP but not for GlpXC. Based on these in vitro data, GlpXP is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号