首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
To determine whether cyclooxygenase inhibitors alter parasympathetic control of airway smooth muscle in situ, we pretreated anesthetized dogs with intravenous indomethacin, meclofenamate, or normal saline and measured the isometric contraction of tracheal muscle in response to electrical stimulation of the vagus nerves. Indomethacin and meclofenamate increase the response of airway smooth muscle to parasympathetic stimulation. In subsequent experiments to determine the site of action of cyclooxygenase inhibitors, we found that indomethacin does not alter the response of tracheal muscle to intra-arterial acetylcholine (a muscarinic agonist) but does augment the response to intra-arterial dimethylpiperaziniumiodide (a nicotinic agonist). Moreover, the response to parasympathetic stimulation after pretreatment with a combination of indomethacin and BW755C (a combined cyclooxygenase-lipoxygenase inhibitor) does not differ significantly from the response after indomethacin or meclofenamate alone. We conclude that cyclooxygenase inhibitors increase the sensitivity of the contractile response of tracheal smooth muscle to parasympathetic stimulation, that they exert their effect on the postganglionic parasympathetic neuron, and that their effect is prejunctional. The effect appears secondary to a decrease in cyclooxygenase products rather than to an increase in lipoxygenase products. These findings suggest that endogenous cyclooxygenase products may modulate parasympathetic control of airway smooth muscle in vivo. They may relate to the mechanisms that underlie airway hyperresponsiveness, by which mediators of inflammation modulate airway responsiveness and by which nonsteroidal anti-inflammatory drugs induce severe bronchoconstrictor responses in some persons who have asthma.  相似文献   

2.
Published in vivo experiments have not supported in vitro reports of the presence of nonadrenergic noncholinergic (NANC) inhibitory pathways in the cat trachea. We therefore examined these pathways, measuring tension in an innervated tracheal segment, flow resistance in more distal airways, and dynamic compliance, in 10 anesthetized mechanically ventilated cats. Initially, cervical vagal stimulation evoked contraction followed by relaxation of smooth muscle of trachea and lower airways; sympathetic stimulation evoked relaxation only. After muscarinic blockade and restoration of smooth muscle tone with 5-hydroxytryptamine (5-HT) applied topically to the tracheal mucosa, vagal stimulation did not affect tracheal segment tension, whereas sympathetic-evoked relaxation was preserved. Similar results were found when tone was restored with intravenous 5-HT, with vagal stimulation also decreasing resistance and increasing compliance. We conclude that NANC pathways are present in lower airways but not in the cervical trachea of the cat. We hypothesize that parasympathetic constriction of cat airway smooth muscle can occur without simultaneous NANC activation, whereas NANC activity occurs only in tandem with parasympathetic stimulation.  相似文献   

3.
We studied the secretory correlates of tracheal smooth muscle contraction caused by platelet-activating factor (PAF) in nine mongrel dogs in vivo. In five dogs, dose-response curves were generated by rapid intra-arterial injection of 10(-10) to 10(-6) mol PAF into the isolated tracheal circulation; tracheal contractile response was measured isometrically in situ. To examine the mechanism by which PAF elicits contraction of canine trachealis, concentrations of serotonin (5-HT) and histamine were assayed in the venous effluent as the arteriovenous difference (AVd) in mediator concentration across the airway for each level of contraction. PAF caused dose-related active tracheal tension to a maximum of 37.2 +/- 5.4 g/cm (10(-6) mol PAF). The AVd in 5-HT increased linearly from 0.20 +/- 0.05 (10(-9) mol PAF) to 3.5 +/- 0.3 ng/ml (10(-6) mol PAF) (P less than 0.005). In contrast, the AVd in histamine was insignificant and did not change with increasing doses of PAF. A positive correlation was obtained between the AVd in 5-HT and active tracheal tension (r = 0.92, P less than 0.001); there was no correlation between AVd in histamine and active tension (r = -0.16). PAF-induced parasympathetic activation was not mediated by 5-HT; contraction elicited by exogenous 5-HT was not affected by muscarinic blockade. We conclude that nonparasympathetically mediated contraction elicited acutely by PAF in dogs results at least in part from secondary release of serotonin and is not mediated by histamine.  相似文献   

4.
The comparative effects of contractile agonists and physiological stimulation of the tracheal and bronchial smooth muscle (BSM) response were studied isometrically in situ in five Basenji-greyhound (BG) and six mongrel dogs. Frequency-response curves generated by bilateral stimulation of the vagus nerves (0-20 Hz, 15-20 V, 2-ms duration) elicited greater maximal contraction in mongrel trachea (36.8 +/- 8.1 vs. 26.9 +/- 4.0 g/cm; P less than 0.02) and exhibited greater responsiveness in mongrel BSM (half-maximal response to electrical stimulation 3.0 +/- 1.1 vs. 7.0 +/- 0.5 Hz; P less than 0.05) compared with BG dogs. However, muscarinic sensitivity to intravenous methacholine (MCh) was substantially greater in BG dogs; MCh caused contraction greater than 1.5 g/cm at a mean dose of 3.0 X 10(-10) mol/kg for BG dogs compared with 5.1 X 10(-9) mol/kg for mongrel controls (P less than 0.03, Mann-Whitney rank-sum test). In contrast to the muscarinic response, the contractile response elicited by intravenous norepinephrine after beta-adrenergic blockade was similar in trachea and bronchus for both mongrel and BG dogs. Our data confirm previous in vitro demonstration of tracheal hyporesponsiveness in BG dogs and demonstrate that the contraction resulting from efferent parasympathetic stimulation is less in the BG than mongrel dogs. However, postsynaptic muscarinic responsiveness of BG BSM is substantially increased. We conclude that a component of airway responsiveness in BG dogs depends directly on contractile forces generated postsynaptically that are nongeometry dependent, postjunctional, and agonist specific.  相似文献   

5.
To assess the role of structures located superficially near the ventrolateral surface of the medulla on the reflex constriction of tracheal smooth muscle that occurs when airway and pulmonary receptors are stimulated mechanically or chemically, experiments were conducted in alpha-chloralose-anesthetized, paralyzed, and artificially ventilated cats. Pressure changes within a bypassed segment of the trachea were used as an index of alterations smooth muscle tone. The effects of focal cooling of the intermediate areas or topically applied lidocaine on the ventral surface of the medulla on the response of the trachea to mechanical and chemical stimulation of airway receptors were examined. Atropine abolished tracheal constriction induced by mechanical stimulation of the carina or aerosolized histamine, showing that the responses were mediated over vagal pathways. Moderate cooling of the intermediate area (20 degrees C) or local application of lidocaine significantly decreased the tracheal constrictive response to mechanical activation of airway receptors. Furthermore, when the trachea was constricted by histamine, cooling of the intermediate area significantly diminished the increased tracheal tone, whereas rewarming restored tracheal tone to the previous level. These findings suggest that under the conditions of the experiments the ventral surface of the medulla plays an important role in constriction of the trachea by inputs from intrapulmonary receptors and in the modulation of parasympathetic outflow to airway smooth muscle.  相似文献   

6.
Modulation of cholinergic neurotransmission in airways by enkephalin   总被引:6,自引:0,他引:6  
We compared the effects of methionine enkephalin and leucine enkephalin on contractions of isolated canine tracheal smooth muscle strips induced by field electrical stimulation (ES) and exogenous acetylcholine (approximately 10(-5) M). Methionine and leucine enkephalin (10(-8) to 10(-5) M), when added at the peak of airway contractions induced by ES at 1 Hz, depressed the contractions in a concentration-dependent manner by a maximum of 95 and 99%, respectively. Acetylcholine-induced contractions of similar magnitude were depressed only 4% by methionine enkephalin and 12% by leucine enkephalin. Frequency-response curves (0.5-20 Hz) were also obtained before and after incubation of tracheal strips with 10(-5) M methionine and leucine enkephalin. Enkephalin depressed contractions induced by stimulation at 0.5 and 1 Hz by an average of 98 and 95%, respectively. The inhibitory effect of enkephalin progressively decreased at successively higher stimulus frequencies until at 20 Hz there was no significant difference between airway contractions obtained in the presence and absence of enkephalin. Naloxone (3 X 10(-5) M) antagonized the inhibitory effects of both enkephalins. We conclude that methionine and leucine enkephalins inhibit the release of acetylcholine from the postganglionic parasympathetic neurons that innervate airway smooth muscle.  相似文献   

7.
We studied the effect of exogenous prostaglandin F2 alpha (PGF2 alpha) on airway smooth muscle contraction caused by parasympathetic stimulation in 22 mongrel dogs in situ. Voltage (0-30 V, constant 20 Hz) and frequency-response (0-25 Hz, 25 V) curves were generated by stimulating the cut ends of both cervical vagus nerves. Airway response was measured isometrically as active tension (AT) in a segment of cervical trachea and as change in airway resistance (RL) and dynamic compliance (Cdyn) in bronchial airways. One hour after 5 mg/kg iv indomethacin, a cumulative frequency-response curve was generated in nine animals by electrical stimulation of the vagus nerves at 15-s intervals. Reproducibility was demonstrated by generating a second curve 7 min later. A third frequency-response curve was generated during active contraction of the airway caused by continuous intravenous infusion of 10 micrograms X kg-1 X min-1PPGF2 alpha. Additional frequency-response studies were generated 15 and 30 min after PGF2 alpha, when airway contractile response (delta RL = +2.8 +/- 0.65 cmH2O X 1(-1) X s; delta Cdyn = -0.0259 +/- 0.007 1/cmH2O) returned to base line. Substantial augmentation of AT, RL, and Cdyn responses was demonstrated in every animal studied (P less than 0.01 for all points greater than 8 Hz) 15 min after PGF2 alpha. At 30 min, response did not differ from initial base-line control. In four animals receiving sham infusion, all frequency-response curves were identical. We demonstrate that PGF2 alpha augments the response to vagus nerve stimulation in tracheal and bronchial airways. Augmentation does not depend on PGF2 alpha-induced active tone.  相似文献   

8.
Potentiation of vagal contractile response by thromboxane mimetic U-46619   总被引:1,自引:0,他引:1  
We studied the effect of the thromboxane mimetic U-46619 on tracheal smooth muscle contraction caused by bilateral stimulation of the vagus nerves in 14 mongrel dogs in situ. The parasympathetic contractile response was studied isometrically after beta-adrenergic blockade with 2 mg/kg iv propranolol plus 20 micrograms X kg-1 X min-1 continuous intravenous infusion and blockade of endogenous prostaglandin synthesis with 5 mg/kg iv indomethacin. An initial frequency-response curve was generated by electrical stimulation of the caudal ends of cut cervical vagi over the range of frequencies 2-25 Hz (constant 25 V) at 15-s intervals. In five dogs, 10(-10) to 10(-8) mol of the thromboxane mimetic (15S)-hydroxyl-11 alpha,9 alpha-(epoxymethano)prosta-5Z,13E-dienoic acid (U-46619) was injected selectively into the tracheal arterial circulation, causing a transient contractile response (less than or equal to 10 g/cm). Additional frequency response studies were generated 7 min before and 1, 15, 30, 45, and 60 min after U-46619. Substantial augmentation of tracheal contraction to efferent vagal stimulation was observed after U-46619 for all frequencies greater than 4 Hz (P less than 0.02). Augmentation of vagally mediated contraction was not observed in four other dogs after equivalent tracheal contraction was elicited without U-46619. Similarly, in four separate dogs, augmentation of tracheal contraction was not observed when acetylcholine was given instead of vagal stimulation after U-46619. We conclude that the thromboxane analogue, U-46619, causes augmentation of tracheal contractile response induced by efferent vagus nerve stimulation. Potentiation is caused by a prejunctional action of U-46619 and is not induced by nonspecific precontraction with another agonist.  相似文献   

9.
A new synthetic compound, L-652,731 (trans-2,5-(3,4,5-trimethoxyphenyl) tetrahydrofuran), which has been demonstrated by Hwang et al. to be a potent and specific platelet-activating factor (PAF) receptor antagonist causes 100% inhibition of 1 microM PAF-induced neutrophil degranulation at 50 microM, but has no effect on neutrophil degranulation induced by precipitating immune complexes (323 micrograms/ml), fMet-Leu-Phe (10(-7) M), or the calcium ionophore A23187 (10(-5) M). Intravenous infusion of 1 mumol L-652,731 results in almost 100% inhibition of hypotension induced by PAF but not that induced by isoproterenol, histamine, bradykinin, or acetylcholine. With the use of this novel PAF receptor antagonist, the in vivo mediator role of PAF in the soluble immune complex-induced hypotension, extravasation, vascular lysosomal hydrolase secretion, and neutropenia in rats was determined. The hypotension, extravasation, and lysosomal hydrolase release induced by immune complex infusion take 2 to 10 min longer to occur than the same responses elicited by PAF infusion. The neutropenia response is immediate with both stimuli. L-652,731 when orally administered to rats (20 mg/kg, 1.5 hr before PAF infusion) inhibited PAF-induced hypotension (69%), extravasation (76%), vascular lysosomal hydrolase release (79%), and neutropenia (73%). The same L-652,731-dosing regimen inhibited immune complex-stimulated hypotension (87%), extravasation (77%), and vascular lysosomal hydrolase release (31%). The initial and complete neutropenia induced by immune complex infusion was not inhibited in L-652,731-pretreated rats, but the rate of return of neutrophils to the blood was faster in the latter rats. Rats with blocked circulation to the liver still exhibited extensive extravasation and vascular lysosomal hydrolase release in response to PAF, but there was no extravasation and greatly reduced hydrolase release in response to immune complexes. Thus PAF is indicated to be a major mediator of soluble immune complex-induced hypotension and vascular permeability and a minor mediator of immune complex-induced lysosomal hydrolase release in rats. PAF probably does not mediate the initial and complete neutropenia stimulated by immune complexes. The liver is probably the major site for PAF production in response to circulating immune complexes.  相似文献   

10.
We report that nicotine is responsible for both a blood-borne stimulation of the respiratory center and a direct effect on intrathoracic airway tone in dogs. We introduced cigarette smoke into the lungs of donor dogs and injected arterial blood obtained from them into the circulation of recipient dogs to show that a blood-borne material increased breathing and airway smooth muscle tone. Smoke from cigarettes containing 2.64 mg of nicotine was effective; that from cigarettes containing 0.42 mg of nicotine was not. Nicotine, in doses comparable to the amounts absorbed from smoke, also increased breathing and tracheal smooth muscle tension when injected into the vertebral circulation of recipient dogs. Finally, blockade of nicotine receptors in the central nervous system and in the airway parasympathetic ganglia inhibited the effects of inhaled cigarette smoke and intravenous nicotine on the respiratory center and on bronchomotor tone. We conclude that nicotine absorbed from cigarette smoke is the main cause of cigarette smoke-induced bronchoconstriction. It caused central respiratory stimulation, resulting in increased breathing and airway smooth muscle tension, and had a direct effect on airway parasympathetic ganglia as well.  相似文献   

11.
To elucidate mechanisms of platelet-activating factor (PAF)-induced contraction, we studied the effect of PAF on 203 canine tracheal smooth muscle (TSM) strips from 45 dogs in vitro in the presence and absence of platelets. PAF (10(-11) to 10(-7) M) alone caused no contraction of TSM even in the presence of airway epithelium. In the presence of 2 x 10(5) platelets/microliter, PAF was an extremely potent contractile agonist (threshold 10(-11) M). This response was inhibited by the PAF antagonist, CV-3988 (10(-6) M), and reversed by the serotonin antagonist, methysergide (EC50 = 3.7 +/- 0.79 x 10(-9) M). Neither atropine nor chlorpheniramine (10(-9) to 10(-6) M) attenuated the response to PAF + platelets. In the presence of platelets, 10(-7) M PAF caused an increase in perfusate concentration of serotonin from 0.93 +/- 0.037 x 10(-8) to 1.7 +/- 0.046 x 10(-8) M (P less than 0.001). Tachyphylaxis, previously demonstrated to be irreversible, was shown to be a platelet-dependent phenomenon; contraction could be repeated in the same TSM after addition of fresh platelets. We demonstrate that PAF-induced contraction of canine TSM is caused by the release of cellular intermediates such as serotonin from platelets. We also demonstrate the site of PAF-induced tachyphylaxis in airway smooth muscle contraction.  相似文献   

12.
We investigated whether platelet-activating factor (PAF) increased epithelial or endothelial permeability in isolated-perfused rabbit lungs. PAF was either injected into the pulmonary artery or instilled into the airway of lungs perfused with Tyrode's solution containing 1% bovine serum albumin. The effect of adding neutrophils or platelets to the perfusate was also tested. Perfusion was maintained 20-40 min after adding PAF and then a fluid filtration coefficient (Kf) was determined to assess vascular permeability. At the end of each experiment, one lung was lavaged, and the lavagate protein concentration (BALP) was determined. Wet weight-to-dry weight ratios (W/D) were determined on the other lung. PAF added to the vascular space increased peak pulmonary arterial pressure (Ppa) from 13.5 +/- 3.1 (mean +/- SE) to 24.2 +/- 3.3 cmH2O (P less than 0.05). The effect was amplified by platelets [Ppa to 70.8 +/- 8.0 cmH2O (P less than 0.05)] but not by neutrophils [Ppa to 22.0 +/- 1.4 cmH2O (P less than 0.05)]. Minimal changes in Ppa were observed after instilling PAF into the airway. The Kf, W/D, and BALP of untreated lungs were not increased by injecting PAF into the vasculature or into the air space. The effect of PAF on Kf, W/D, and BALP was unaltered by adding platelets or neutrophils to the perfusate. PAF increases intravascular pressure (at a constant rate of perfusion) but does not increase epithelial or endothelial permeability in isolated-perfused rabbit lungs.  相似文献   

13.
The canine cervical trachea has been used for numerous studies regarding the neural control of tracheal smooth muscle. The purpose of the present study was to determine whether there is lateral dominance by either the left or right vagal innervation of the canine cervical trachea. In anesthetized dogs, pressure in the cuff of the endotracheal tube was used as an index of smooth muscle tone in the trachea. After establishment of tracheal tone, as indicated by increased cuff pressure, either the right or left vagus nerve was sectioned followed by section of the contralateral vagus. Sectioning the right vagus first resulted in total loss of tone in the cervical trachea, whereas sectioning the left vagus first produced either a partial or no decrease in tracheal tone. After bilateral section of the vagi, cuff pressure was recorded during electrical stimulation of the rostral end of the right or left vagus. At the maximum current strength used, stimulation of the left vagus produced tracheal constriction that averaged 28.5% of the response to stimulation of the right vagus (9.0 +/- 1.8 and 31.6 +/- 2.5 mmHg, respectively). In conclusion, the musculature of cervical trachea in the dog appears to be predominantly controlled by vagal efferents in the right vagus nerve.  相似文献   

14.
We have studied the effect of repeated in vivo antigen exposure on in vitro airway responsiveness in sensitized sheep. Fourteen sheep underwent five biweekly exposures to aerosolized Ascaris suum antigen or saline. Following this exposure regimen, the animals were killed and tracheal smooth muscle and lung parenchymal strips were prepared for in vitro studies of isometric contraction in response to histamine, methacholine, prostaglandin F2 alpha, and a thromboxane A2 analogue. No alteration in tracheal smooth muscle responsiveness was observed between saline- and antigen-exposed tissue. In contrast, by use of lung parenchymal strips as an index of peripheral airway responsiveness, significant increases in responsiveness to histamine and a thromboxane A2 analogue (10(-6) and 10(-5) M) were observed in antigen-exposed tissue compared with saline controls. These results demonstrate that repeated antigen exposure in vivo selectively increase the responsiveness of peripheral lung smooth muscle to certain chemical mediators of anaphylaxis.  相似文献   

15.
In anesthetized cats, we 1) compared the effects of antihypertensive agents (nifedipine, clonidine, phentolamine, propranolol, and nitroprusside) on the parasympathetic vasodilations elicited by lingual nerve (LN) stimulation in the lower lip and tongue and 2) investigated the mechanisms underlying the inhibitory effect of nifedipine on parasympathetic lower lip vasodilation. At the doses used, each antihypertensive agent reduced systemic arterial blood pressure by approximately 20 mmHg; however, the parasympathetic vasodilation elicited by LN stimulation was significantly reduced only by nifedipine. This inhibitory effect of nifedipine was not seen when LN was stimulated during ongoing repetitive stimulation of the superior cervical sympathetic trunk at 1-Hz frequency. This suggests that the ability of lip and tongue blood vessels to relax to parasympathetic stimulation is not directly impaired by this calcium channel blocker and that the inhibitory effects of nifedipine seen here probably resulted from an action on postsynaptic sites in vascular smooth muscle that caused a reduction in preexisting sympathetic vasoconstrictor tone (by inhibiting calcium influx into the vascular smooth muscle cell).  相似文献   

16.
Goblet cell metaplasia is an important morphological feature in the airways of patients with chronic airway diseases; however, the precise mechanisms that cause this feature are unknown. We investigated the role of endogenous platelet-activating factor (PAF) in airway goblet cell metaplasia induced by cigarette smoke in vivo. Guinea pigs were exposed repeatedly to cigarette smoke for 14 consecutive days. The number of goblet cells in each trachea was determined with Alcian blue-periodic acid-Schiff staining. Differential cell counts and PAF levels in bronchoalveolar lavage fluid were also evaluated. Cigarette smoke exposure significantly increased the number of goblet cells. Eosinophils, neutrophils, and PAF levels in bronchoalveolar lavage fluid were also significantly increased after cigarette smoke. Treatment with a specific PAF receptor antagonist, E-6123, significantly attenuated the increases in the number of airway goblet cells, eosinophils, and neutrophils observed after cigarette smoke exposure. These results suggest that endogenous PAF may play a key role in goblet cell metaplasia induced by cigarette smoke and that potential roles exist for inhibitors of PAF receptor in the treatment of hypersecretory airway diseases.  相似文献   

17.
Lipid mediators play an important role in modulating inflammatory responses. Platelet-activating factor (PAF) is a potent proinflammatory phospholipid with eosinophil chemotactic activity in vitro and in vivo. We show in this study that mice deficient in PAF receptor exhibited significantly reduced airway hyperresponsiveness to muscarinic cholinergic stimulation in an asthma model. However, PAF receptor-deficient mice developed an eosinophilic inflammatory response at a comparable level to that of wild-type mice. These results indicate an important role for PAF receptor, downstream of the eosinophilic inflammatory cascade, in regulating airway responsiveness after sensitization and aeroallergen challenge.  相似文献   

18.
Exposure to ozone (O3) induces airway hyperresponsiveness mediated partly through the release of substance P (SP) from nerve terminals in the airway wall. Although substantial evidence suggests that SP is released by sensory nerves, SP is also present in neurons of airway ganglia. The purpose of this study was to investigate the role of intrinsic airway neurons in O3-enhanced airway responsiveness in ferret trachea. To remove the effects of sensory innervation, segments of ferret trachea were maintained in culture conditions for 24 h before in vitro exposure to 2 parts/million of O3 or air for 1 h. Sensory nerve depletion was confirmed by showing that capsaicin did not affect tracheal smooth muscle responsiveness to cholinergic agonist or contractility responses to electrical field stimulation (EFS). Contractions of isolated tracheal smooth muscle to EFS were significantly increased after in vitro O3 exposure, but the constrictor response to cholinergic agonist was not altered. Pretreatment with CP-99994, an antagonist of the neurokinin 1 receptor, attenuated the increased contraction to EFS after O3 exposure but had no effect in the air exposure group. The number of SP-positive neurons in longitudinal trunk ganglia, the extent of SP innervation to superficial muscular plexus nerve cell bodies, and SP nerve fiber density in tracheal smooth muscle all increased significantly after O3 exposure. The results show that release of SP from intrinsic airway neurons contributes to O3-enhanced tracheal smooth muscle responsiveness by facilitating acetylcholine release from cholinergic nerve terminals.  相似文献   

19.
Stimulation of chemo-, irritant, and pulmonary C-fiber receptors reflexly constricts airway smooth muscle and alters ventilation in mature animals. These reflex responses of airway smooth muscle have, however, not been clearly characterized during early development. In this study we compared the maturation of reflex pathways regulating airway smooth muscle tone and ventilation in anesthetized, paralyzed, and artificially ventilated 2- to 3- and 10-wk-old piglets. Tracheal smooth muscle tension was measured from an open tracheal segment by use of a force transducer, and phrenic nerve activity was measured from a proximal cut end of the phrenic nerve. Inhalation of 7% CO2 caused a transient increase in tracheal tension in both age groups, whereas hypoxia caused no airway smooth muscle response in either group. The phrenic responses to 7% CO2 and 12% O2 were comparable in both age groups. Lung deflation and capsaicin (20 micrograms/kg iv) administration did not alter tracheal tension in the younger piglets but caused tracheal tension to increase by 87 +/- 28 and 31 +/- 10%, respectively, in the older animals (both P less than 0.05). In contrast, phrenic response to both stimuli was comparable between ages: deflation increased phrenic activity while capsaicin induced neural apnea. Laryngeal stimulation did not increase tracheal tension but induced neural apnea in both age groups. These data demonstrate that between 2 and 10 wk of life, piglets exhibit developmental changes in the reflex responses of airway smooth muscle situated in the larger airways in response to irritant and C-fiber but not chemoreceptor stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Decrease in muscle perfusion affects on cardiovascular response to exercise. Muscle hypoperfusion enhances the increase in blood pressure responses to exercise. Muscle perfusion depends not only on central blood pressure but also how fit the active muscle is above or below the heart level; muscle perfusion decreases as arm is elevated. Static exercise increases muscle sympathetic nerve activity (MSNA) innervating vessels in non-active muscles. The exercise-induced increase in MSNA is mainly mediated by stimulating chemosensitive muscle afferents in active muscles. However, the effect of arm elevation on MSNA during forearm exercise is not examined. On the other hand, space flight and simulated microgravity exposure causes reduction in muscle blood flow, suggesting chronic muscle hypoperfused condition during simulated microgravity. Therefore, there is a possibility that arm elevation after microgravity exposure alters MSNA responsiveness during exercise. However, arm elevation effect after exposure to simulated microgravity is not examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号