首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A novel method for estimating neutral rates and patterns of DNA evolution in Drosophila takes advantage of the propensity of non-LTR retrotransposable elements to create nonfunctional, transpositionally inactive copies as a product of transposition. For many LINE elements, most copies present in a genome at any one time are nonfunctional "dead-on-arrival" (DOA) copies. Because these are off-shoots of active, transpositionally competent "master" lineages, in a gene tree of a LINE element from multiple samples from related species, the DOA lineages are expected to map to the terminal branches and the active lineages to the internal branches, the primary exceptions being when the sample includes DOA copies that are allelic or orthologous. Analysis of nucleotide substitutions and other changes along the terminal branches therefore allows estimation of the fixation process in the DOA copies, which are unconstrained with respect to protein coding; and under selective neutrality, the fixation process estimates the underlying mutational pattern. We have studied the retroelement Helena in Drosophila. An unexpectedly high rate of DNA loss was observed, yielding a half-life of unconstrained DNA sequences approximately 60-fold faster in Drosophila than in mammals. The high rate of DNA loss suggests a straightforward explanation of the seeming paradox that Drosophila has many fewer pseudogenes than found in mammalian species. Differential rates of deletion in different taxa might also contribute to the celebrated C-value paradox of why some closely related organisms can have very different DNA contents. New data presented here rule out the possibility that the transposition process itself is highly mutagenic, hence the observed linear relation between number of deletions and number of nucleotide substitutions is most easily explained by the hypothesis that both types of changes accumulate in unconstrained sequences over time.  相似文献   

2.
Ptak SE  Petrov DA 《Genetics》2002,162(3):1233-1244
Studies of "dead-on-arrival" transposable elements in Drosophila melanogaster found that deletions outnumber insertions approximately 8:1 with a median size for deletions of approximately 10 bp. These results are consistent with the deletion and insertion profiles found in most other Drosophila pseudogenes. In contrast, a recent study of D. melanogaster introns found a deletion/insertion ratio of 1.35:1, with 84% of deletions being shorter than 10 bp. This discrepancy could be explained if deletions, especially long deletions, are more frequently strongly deleterious than insertions and are eliminated disproportionately from intron sequences. To test this possibility, we use analysis and simulations to examine how deletions and insertions of different lengths affect different components of splicing and determine the distribution of deletions and insertions that preserve the original exons. We find that, consistent with our predictions, longer deletions affect splicing at a much higher rate compared to insertions and short deletions. We also explore other potential constraints in introns and show that most of these also disproportionately affect large deletions. Altogether we demonstrate that constraints in introns may explain much of the difference in the pattern of deletions and insertions observed in Drosophila introns and pseudogenes.  相似文献   

3.
Telomere elongation by telomerase is the most widespread mechanism among eukaryotes. However, alternative mechanisms such as homologous recombination between terminal satellite DNAs are probably used in lower dipteran insects and in some plants. Drosophila melanogaster uses the very unusual telomere elongation pathway of transposition of telomere-specific retrotransposable elements. The uniqueness of this telomere elongation mechanism raises the question of its origin. We, therefore, analyzed sequences located at telomeres of fairly distantly related Drosophila species, and in this paper we describe the characterization of complex satellite DNA sequences located at the telomeres of D. virilis and other species in the virilis group. We suggest an involvement of these DNA satellites in telomere elongation by homologous recombination similar to that found in lower dipterans. Our findings raise the possibility that telomere elongation by specific retrotransposons as found in D. melanogaster and its sibling species is a recent event in the evolution of dipteran insects.  相似文献   

4.
Drosophila telomeres have been maintained by retrotransposition for at least 60 MY, which predates the separation of extant species of this genus. Studies of D. melanogaster, D. yakuba, and D. virilis show that, in Drosophila, telomeres are composed of two non-LTR retrotransposons, HeT-A and TART. Far from being static, HeT-A and TART evolve faster than Drosophila euchromatic genes. In spite of their high rate of sequence change, HeT-A and TART maintain their basic structures and unusual individual features. The maintenance of their separate identities suggests that HeT-A and TART cooperate either in the process of retrotransposition onto the chromosome end, or in the formation of telomere chromatin by transposed DNA copies. The telomeric retrotransposons and the Drosophila genome constitute an example of a robust symbiotic relationship between mobile elements and the genome.  相似文献   

5.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci.  相似文献   

6.
7.
Comparative genomics is a powerful approach to inference of the dynamics of genome evolution. Most information about the evolution of microsatellites in the genus Drosophila has been obtained from Drosophila melanogaster. For comparison, we collected microsatellite data for the distantly related species Drosophila virilis. Screening about 0.5 Mb of nonredundant genomic sequence from GenBank, we identified 239 dinucleotide microsatellites. On average, D. virilis dinucleotides were significantly longer than D. melanogaster microsatellites (7.69 repeats vs. 6.75 repeats). Similarly, direct cloning of microsatellites resulted in a higher mean repeat number in D. virilis than in D. melanogaster (12.7 repeats vs. 12.2 repeats). Characterization of 11 microsatellite loci mapping to division 40-49 on the fourth chromosome of D. virilis indicated that D. virilis microsatellites are more variable than those of D. melanogaster.  相似文献   

8.
Yang HP  Tanikawa AY  Kondrashov AS 《Genetics》2001,157(3):1285-1292
To investigate the molecular nature and rate of spontaneous mutation in Drosophila melanogaster, we screened 887,000 individuals for de novo recessive loss-of-function mutations at eight loci that affect eye color. In total, 28 mutants were found in 16 independent events (13 singletons and three clusters). The molecular nature of the 13 events was analyzed. Coding exons of the locus were affected by insertions or deletions >100 nucleotides long (6 events), short frameshift insertions or deletions (4 events), and replacement nucleotide substitutions (1 event). In the case of 2 mutant alleles, coding regions were not affected. Because approximately 70% of spontaneous de novo loss-of-function mutations in Homo sapiens are due to nucleotide substitutions within coding regions, insertions and deletions appear to play a much larger role in spontaneous mutation in D. melanogaster than in H. sapiens. If so, the per nucleotide mutation rate in D. melanogaster may be lower than in H. sapiens, even if their per locus mutation rates are similar.  相似文献   

9.
Distribution of the retrotransposable element 412 in Drosophila species   总被引:1,自引:1,他引:0  
Copy numbers of sequences homologous to the Drosophila melanogaster retrotransposable element 412, their distribution between the chromosome arms and the chromocenter, and whether they contain full- size copies were analyzed for 55 species of the Drosophila genus. Element 412 insertion sites were detected on the chromosome arms of D. melanogaster, Drosophila simulans, and a few species of the obscura group, but the chromocenter was labeled in almost all species. The presence of element 412 sequences in the majority of species shows that this element has a long evolutionary history in Drosophilidae, although it may have recently invaded the chromosomes in some species, such as D. simulans. Differences in copy number between species may be due to population size or specific endogenous or environmental factors and may follow the worldwide invasion of the species. Putative full-length copies were detected in the chromocenters of some species with no copies on the chromosome arms, suggesting that the chromocenter may be a shelter for such copies and not only for deleted ones.   相似文献   

10.
11.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

12.
Twenty-four biotin-labeled recombinant-DNA probes which contained putative unique-sequence Drosophila melanogaster DNA were hybridized to larval salivary-gland chromosomes of D. melanogaster and Drosophila virilis. All probes hybridized to D. melanogaster chromosomes at the expected sites. However, one probe hybridized to at least 16 additional sites, and one hybridized to one additional site. Thirteen probes hybridized strongly to D. virilis chromosomes, four hybridized weakly and infrequently, and seven did not hybridize. Probes representing two multigene families (beta-tubulin and yolk-protein) hybridized as would be expected if all sites had been conserved in the two species on the same chromosomal elements. The multiple hybridization sites of a third probe which may represent a multigene family were also conserved. The results were consistent with H.J. Muller's proposal that chromosomal elements have been conserved during evolution of this genus.  相似文献   

13.
14.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

15.
A search for noncanonical variants of the gypsy retrotransposon (MDG4) in the genome of the Drosophila melanogaster strain G32 led to the cloning of four copies of the poorly studied 7411-bp gtwin element. Sequence analysis showed that gtwin belongs to a family of endogeneous retroviruses, which are widespread in the Drosophila genome and have recently been termed insect erantiviruses. The gtwin retrotransposon is evolutionarily closest to MDG4, as evident from a good alignment of their nucleotide sequences including ORF1 (the pol gene) and ORF3 (the env gene), as well as the amino acid sequences of their protein products. These regions showed more than 75% homology. The distribution of gtwin was studied in several strains of the genus Drosophila. While strain G32 contained more than 20 copies of the element, ten other D. melanogaster strains carried gtwin in two to six copies per genome. The gtwin element was not detected in D. hydei or D. virilis. Comparison of the cloned gtwin sequences with the gtwin sequence available from the D. melanogaster genome database showed that the two variants of the mobile element differ by the presence or absence of a stop codon in the central region of ORF3. Its absence from the gtwin copies cloned from the strain G32 may indicate an association between the functional state of ORF3 and amplification of the element.  相似文献   

16.
17.
Complex mitochondrial DNA in Drosophila.   总被引:1,自引:0,他引:1       下载免费PDF全文
The larval mtDNA isolated from D. virilis, D. simulans and D. melanogaster exists in complex molecular forms in addition to the simple monomeric circular form. The frequency of circular dimers and oligomers is highly elevated in apparently normal larval tissues. These complex forms of mtDNA are separable on agarose gels. Hind III restriction endonuclease and electron microscopic analyses used in the present study have revealed that circular dimers are simply the circular concatemers of two monomeric circles which are arranged in a head-to-tail structure with no detectable heterologous regions such as insertions or deletions. The electrophoretic patterns of Hind III digested mtDNAs of D. simulans and D. melanogaster (sibling species) are identical and distinguishable from that of distantly related species, D. virilis.  相似文献   

18.
The maintenance of the telomeres in Drosophila species depends on the transposition of the non-LTR retrotransposons HeT-A, TAHRE and TART. HeT-A and TART elements have been found in all studied species of Drosophila suggesting that their function has been maintained for more than 60 million years. Of the three elements, HeT-A is by far the main component of D. melanogaster telomeres and, unexpectedly for an element with an essential role in telomere elongation, the conservation of the nucleotide sequence of HeT-A is very low. In order to better understand the function of this telomeric retrotransposon, we studied the degree of conservation along HeT-A copies. We identified a small sequence within the 3' UTR of the element that is extremely conserved among copies of the element both, within D. melanogaster and related species from the melanogaster group. The sequence corresponds to a piRNA target in D. melanogaster that we named HeT-A_pi1. Comparison with piRNA target sequences from other Drosophila retrotransposons showed that HeT-A_pi1 is the piRNA target in the Drosophila genome with the highest degree of conservation among species from the melanogaster group. The high conservation of this piRNA target in contrast with the surrounding sequence, suggests an important function of the HeT-A_pi1 sequence in the co-evolution of the HeT-A retrotransposon and the Drosophila genome.  相似文献   

19.
R1 is a non-long terminal repeat (non-LTR) retrotransposable element that inserts into a specific sequence of insect 28S ribosomal RNA genes. We have previously shown that this element has been maintained through vertical transmission in the melanogaster species subgroup of Drosophila. To address whether R1 elements have been vertically transmitted for longer periods of evolutionary time, the analysis has been extended to 11 other species from four species groups of the genus Drosophila (melanogaster, obscura, testecea, and repleta). All sequenced elements appeared functional on the basis of the preservation of their open-reading frames and consistently higher rate of substitution at synonymous sites relative to replacement sites. The phylogenetic relationships of the R1 elements from all species analyzed were congruent with the species phylogenies, suggesting that the R1 elements have been vertically transmitted since the inception of the Drosophila genus, an estimated 50-70 Mya. The stable maintenance of R1 through the germ line appears to be the major mechanism for the widespread distribution of these elements in Drosophila. In two species, D. neotestecea of the testecea group and D. takahashii of the melanogaster group, a second family of R1 elements was also present that differed in sequence by 46% and 31%, respectively, from the family that was congruent with the species phylogeny. These second families may represent occasional horizontal transfers or, alternatively, they could reflect the ability of R1 elements to diverge into new families within a species and evolve independently.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号