首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that can trigger apoptosis in many types of human cancer cells via engagement of its two pro-apoptotic receptors TRAIL-R1 (DR4) and TRAIL-R2 (DR5). TRAIL can also activate several other signaling pathways such as activation of stress kinases, canonical NF-κB signaling and necroptosis. Though both receptors are ubiquitously expressed, their relative participation in TRAIL-induced signaling is still largely unknown. To analyze TRAIL receptor-specific signaling, we prepared Strep-tagged, trimerized variants of recombinant human TRAIL with high affinity for either DR4 or DR5 receptor. Using these receptor-specific ligands, we examined the contribution of individual pro-apoptotic receptors to TRAIL-induced signaling pathways. We found that in TRAIL-resistant colorectal HT-29 cells but not in pancreatic PANC-1 cancer cells, DISC formation and initial caspase-8 processing proceeds comparably via both DR4- and DR5-activated signaling. TRAIL-induced apoptosis, enhanced by the inhibitor of the Bcl-2 family ABT-737, or by the translation inhibitor homoharringtonine, proceeded in both cell lines predominantly via the DR5 receptor. ShRNA-mediated downregulation of DR4 or DR5 receptors in HT-29 cells also pointed to a stronger contribution of DR5 in TRAIL-induced apoptosis. In contrast to apoptosis, necroptotic signaling was activated similarly by both DR4- or DR5-specific ligands. Activation of auxiliary signaling pathways involving NF-κB or stress kinases proceeded under apoptotic conditions mainly in a DR5-dependent manner, while these signaling pathways were during necroptosis similarly activated by either of these ligands. Our study provides the first systematic insight into DR4 ?/DR5-specific signaling in colorectal and pancreatic cancer cells.  相似文献   

2.
3.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53−/−) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

4.
The tumour necrosis factor family member TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in a variety of cancer cells through the activation of death receptors 4 (DR4) and 5 (DR5) and is considered a promising anticancer therapeutic agent. As apoptosis seems to occur primarily via only one of the two death receptors in many cancer cells, the introduction of DR selectivity is thought to create more potent TRAIL agonists with superior therapeutic properties. By use of a computer-aided structure-based design followed by rational combination of mutations, we obtained variants that signal exclusively via DR4. Besides an enhanced selectivity, these TRAIL-DR4 agonists show superior affinity to DR4, and a high apoptosis-inducing activity against several TRAIL-sensitive and -resistant cancer cell lines in vitro. Intriguingly, combined treatment of the DR4-selective variant and a DR5-selective TRAIL variant in cancer cell lines signalling by both death receptors leads to a significant increase in activity when compared with wild-type rhTRAIL or each single rhTRAIL variant. Our results suggest that TRAIL induced apoptosis via high-affinity and rapid-selective homotrimerization of each DR represent an important step towards an efficient cancer treatment.  相似文献   

5.
The discovery of the molecular targets of chemotherapeutic medicines and their chemical footprints can validate and improve the use of such medicines. In the present report, we investigated the effect of mitomycin C (MMC), a classical chemotherapeutic agent on cancer cell apoptosis induced by TRAIL. We found that MMC not only potentiated TRAIL-induced apoptosis in HCT116 (p53?/?) colon cancer cells but also sensitized TRAIL-resistant colon cancer cells HT-29 to the cytokine both in vitro and in vivo. MMC also augmented the pro-apoptotic effects of two TRAIL receptor agonist antibodies, mapatumumab and lexatumumab. At a mechanistic level, MMC downregulated cell survival proteins, including Bcl2, Mcl-1 and Bcl-XL, and upregulated pro-apoptotic proteins including Bax, Bim and the cell surface expression of TRAIL death receptors DR4 and DR5. Gene silencing of DR5 by short hairpin RNA reduced the apoptosis induced by combination treatment of MMC and TRAIL. Induction of DR4 and DR5 was independent of p53, Bax and Bim but was dependent on c-Jun N terminal kinase (JNK) as JNK pharmacological inhibition and siRNA abolished the induction of the TRAIL receptors by MMC.  相似文献   

6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

7.
Whether celastrol, a triterpene from traditional Chinese medicine, can modulate the anticancer effects of TRAIL, the cytokine that is currently in clinical trial, was investigated. As indicated by assays that measure plasma membrane integrity, phosphatidylserine exposure, mitochondrial activity, and activation of caspase-8, caspase-9, and caspase-3, celastrol potentiated the TRAIL-induced apoptosis in human breast cancer cells, and converted TRAIL-resistant cells to TRAIL-sensitive cells. When examined for its mechanism, we found that the triterpene down-regulated the expression of cell survival proteins including cFLIP, IAP-1, Bcl-2, Bcl-xL, survivin, and XIAP and up-regulated Bax expression. In addition, we found that celastrol induced the cell surface expression of both the TRAIL receptors DR4 and DR5. This increase in receptors was noted in a wide variety of cancer cells including breast, lung, colorectal, prostate, esophageal, and pancreatic cancer cells, and myeloid and leukemia cells. Gene silencing of the death receptor abolished the effect of celastrol on TRAIL-induced apoptosis. Induction of the death receptor by the triterpenoid was found to be p53-independent but required the induction of CAAT/enhancer-binding protein homologous protein (CHOP), inasmuch as gene silencing of CHOP abolished the induction of DR5 expression by celastrol and associated enhancement of TRAIL-induced apoptosis. We found that celastrol also induced reactive oxygen species (ROS) generation, and ROS sequestration inhibited celastrol-induced expression of CHOP and DR5, and consequent sensitization to TRAIL. Overall, our results demonstrate that celastrol can potentiate the apoptotic effects of TRAIL through down-regulation of cell survival proteins and up-regulation of death receptors via the ROS-mediated up-regulation of CHOP pathway.  相似文献   

8.
Many tumor cell types are sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Incubation of TRAIL-sensitive cells with TRAIL invariably leads to resistant survivors even when high doses of TRAIL are used. Because the emergence of resistance to apoptosis is a major concern in successful treatment of cancer, and TRAIL survivors may contribute to therapeutic failure, we investigated potential resistance mechanisms. We selected TRAIL-resistant SW480 human colon adenocarcinoma cells by repeatedly treating them with high and/or low doses of TRAIL. The resulting TRAIL-resistant clones were not cross-resistant to Fas or paclitaxel. Expression of modulators of apoptosis was not changed in the resistant cells, including TRAIL receptors, cFLIP, Bax, Bid, or IAP proteins. Surprisingly, we found that DISC formation was deficient in multiple selected TRAIL-resistant clones. DR4 was not recruited to the DISC upon TRAIL treatment, and caspase-8 was not activated at the DISC. Although total cellular DR4 mRNA and protein were virtually identical in TRAIL-sensitive parental and TRAIL-resistant clones, DR4 protein expression on the cell surface was essentially undetectable in the TRAIL-resistant clones. Moreover, exogenous DR4 and KILLER/DR5 were not properly transported to the cell surface in the TRAIL-resistant cells. Interestingly, TRAIL-resistant cells were resensitized to TRAIL by tunicamycin pretreatment, which increased cell surface expression of DR4 and KILLER/DR5. Our data suggest that tumor cells may become resistant to TRAIL through regulation of the death receptor cell surface transport and that resistance to TRAIL may be overcome by the glycosylation inhibitor/endoplasmic reticulum stress-inducing agent tunicamycin.  相似文献   

9.
TRAIL resistance in many cancer cells is one of the major problems in TRAIL-based cancer therapy. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are strictly needed for the improvement of anti-cancer effect of TRAIL. Acrolein is a byproduct of lipid peroxidation, which has been involved in pulmonary, cardiac and neurodegenerative diseases. We investigated whether acrolein, an α,β-unsaturated aldehyde, can potentiate TRAIL-induced apoptosis in human renal cancer cells. The combined treatment with acrolein and TRAIL significantly induced apoptosis, and stimulated of caspase-3 activity, DNA fragmentation, and cleavage of PARP. We found that acrolein down-regulated the protein level of Bcl-2 and Bcl-2 overexpression inhibited the cell death induced by the combined treatment with acrolein and TRAIL. In addition, acrolein up-regulated C/EBP homologous protein (CHOP) and TRAIL death receptor 5 (DR5) and down-regulation of CHOP or DR5 expression using the respective small interfering RNA significantly attenuated the apoptosis induced by acrolein plus TRAIL. Interestingly, pretreatment with an antioxidant, N-acetylcysteine (NAC), inhibited not only CHOP and DR5 up-regulation but also the cell death induced by acrolein plus TRAIL. Taken together, our results demonstrated that acrolein enhances TRAIL-induced apoptosis in Caki cells through down-regulation of Bcl-2 and ROS dependent up-regulation of DR5.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis and kills cancer cells but not normal cells. However, TRAIL resistance due to low level of TRAIL receptor expression is widely found in cancer cells and hampers its development for cancer treatment. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are urgently needed. We investigated whether tanshinones, the major bioactive compounds of Salvia miltiorrhiza (danshen), can up-regulate TRAIL receptor expression. Among the major tanshinones being tested, cryptotanshinone (CT) showed the best ability to induce TRAIL receptor 2 (DR5) expression. We further showed that CT was capable of promoting TRAIL-induced cell death and apoptosis in A375 melanoma cells. CT-induced DR5 induction was not cell type-specific, as DR5 induction was observed in other cancer cell types. DR5 knockdown abolished the enhancing effect of CT on TRAIL responses. Mechanistically, induction of the DR5 by CT was found to be p53-independent but dependent on the induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). Knockdown of CHOP abolished CT-induced DR5 expression and the associated potentiation of TRAIL-mediated cell death. In addition, CT-induced ROS production preceded up-regulation of CHOP and DR5 and consequent sensitization of cells to TRAIL. Interestingly, CT also converted TRAIL-resistant lung A549 cancer cells into TRAIL-sensitive cells. Taken together, our results indicate that CT can potentiate TRAIL-induced apoptosis through up-regulation of DR5.  相似文献   

11.
This study demonstrates that combined treatment with subtoxic doses of Codium extracts (CE), a flavonoid found in many fruits and vegetables, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces apoptosis in TRAIL-resistant colorectal cancer (CRC) cells. Effective induction of apoptosis by combined treatment with CE and TRAIL was not blocked by Bcl-xL overexpression, which is known to confer resistance to various chemotherapeutic agents. While TRAIL-mediated proteolytic processing of procaspase-3 was partially blocked in various CRC cells treated with TRAIL alone, co-treatment with CE efficiently recovered TRAIL-induced caspase activation. We observed that CE treatment of CRC cells did not change the expression of anti-apoptotic proteins and pro-apoptotic proteins, including death receptors (DR4 and DR5). However, CE treatment markedly reduced the protein level of the short form of the cellular FLICE-inhibitory protein (c-FLIPS), an inhibitor of caspase-8, via proteasome-mediated degradation. Collectively, these observations show that CE recovers TRAIL sensitivity in various CRC cells via down-regulation of c-FLIPS.  相似文献   

12.
Kim MR  Lee JY  Park MT  Chun YJ  Jang YJ  Kang CM  Kim HS  Cho CK  Lee YS  Jeong HY  Lee SJ 《FEBS letters》2001,505(1):179-184
Although the majority of cancer cells are killed by TRAIL (tumor necrosis factor-related apoptosis-inducing ligand treatment), certain types show resistance to it. Ionizing radiation also induces cell death in cancer cells and may share common intracellular pathways with TRAIL leading to apoptosis. In the present study, we examined whether ionizing radiation could overcome TRAIL resistance in the variant Jurkat clones. We first selected TRAIL-resistant or -sensitive Jurkat clones and examined cross-responsiveness of the clones between TRAIL and radiation. Treatment with gamma-radiation induced significant apoptosis in all the clones, indicating that there seemed to be no cross-resistance between TRAIL and radiation. Combined treatment of radiation with TRAIL synergistically enhanced killing of TRAIL-resistant cells, compared to TRAIL or radiation alone. Apoptosis induced by combined treatment of TRAIL and radiation in TRAIL-resistant cells was associated with cleavage of caspase-8 and the proapoptotic Bid protein, resulting in the activation of caspase-9 and caspase-3. No changes in the expressions of TRAIL receptors (DR4 and DR5) and Bcl-2 or Bax were found after treatment. The caspase inhibitor z-VAD-fmk completely counteracted the synergistic cell killing induced by combined treatment of TRAIL and gamma-radiation. These results demonstrated that ionizing radiation in combination with TRAIL could overcome resistance to TRAIL in TRAIL-resistant cells through TRAIL receptor-independent synergistic activation of the cascades of the caspase-8 pathway, suggesting a potential clinical application of combination treatment of TRAIL and ionizing radiation to TRAIL-resistant cancer cells.  相似文献   

13.
The TRAIL/death-receptor signaling pathway has been considered a promising target for selective cancer therapy, although some malignant tumors exhibit TRAIL resistance. We previously found that isoflavonoid enhanced TRAIL-induced apoptosis in TRAIL-resistant cells, which is achieved through up-regulation of death receptor 5 (DR5). In our screening program targeting DR5 promoter enhancement activity, activity-guided fractionations of the extract of Catimbium speciosum led to the isolation of six compounds. Of the isolates, cardamomin (6), the most potent compound, enhanced the expressions of DR5 and DR4 and decreased the Bcl-xL level in TRAIL-resistant DLD1 cells. The combination of 6 and TRAIL synergistically enhanced TRAIL-induced apoptosis against TRAIL-resistant cells upon the activation of caspase-8, 9, and 3. In addition, enhancement of apoptosis by 6 was inhibited by human recombinant DR5/Fc and DR4/Fc chimera proteins, TRAIL-neutralizing fusion proteins, indicating that 6 sensitize TRAIL-resistant cells to TRAIL through the induction of DR5 and DR4. Also, up-regulation of DR5 by 6 paralleled that of CCAAT/enhancer-binding protein-homologous protein (CHOP).  相似文献   

14.
Our study aimed to compare death signalling pathways triggered by lupulone in TRAIL-sensitive human colon cancer cells (SW480) and in their derived TRAIL-resistant metastatic cells (SW620). Lupulone (40 μg/ml) up-regulated expression of TRAIL DR4/DR5 death receptors at the cell surface of both cell lines, even in the absence of exogenous TRAIL ligand. Cell death induced by lupulone was inhibited in SW480 and SW620 cells exposed to blocking anti-DR4/DR5 antibodies. In SW480 cells, lupulone triggered cell death through a cross-talk between TRAIL-DR4/DR5 and the mitochondrial (intrinsic) pathways involving caspase-8 activation and Bid protein cleavage. As a consequence mitochondrial cytochrome c was released into the cytosol and activation of caspases-9 and -3 was observed. In the metastatic SW620 cells, lupulone restored the sensibility of these cells to TRAIL ligand and activated the extrinsic apoptotic pathway via DR4/DR5 death receptors and the involvement of the caspase-8/caspase-3 cascade. The demonstration that lupulone is able to activate TRAIL-death signalling pathways even in TRAIL resistant cancer cells highlights the potential of this natural compound for cancer prevention and therapy.  相似文献   

15.
16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.  相似文献   

17.

Aims

Neobavaisoflavone (NBIF), an isoflavone isolated from Psoralea corylifolia (Leguminosae), has striking anti-inflammatory and anti-cancer effects. NBIF inhibits the proliferation of prostate cancer in vitro and in vivo.

Main methods

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a key endogenous molecule that selectively induces apoptosis in cancer cells with little or no toxicity in normal cells. However, some cancer cells, including U373MG cells, are resistant to TRAIL-mediated apoptosis. We demonstrated that the cell viability, migration and invasion assay were used in U373MG glioma cells.

Key findings

In this study, we found that NBIF sensitizes human U373MG glioma cells to TRAIL-mediated apoptosis. Co-treatment of TRAIL and NBIF effectively induced Bid cleavage and activated caspases 3, 8, and 9. Importantly, DR5 expression was upregulated by NBIF. We also observed that the combination NBIF and TRAIL increased expression of BAX. We further demonstrate that NBIF induced TRAIL-mediated apoptosis in human glioma cells by suppressing migration and invasion, and by inhibiting anoikis resistance.

Significance

Taken together, our results suggest that NBIF reduces the resistance of cancer cells to TRAIL and that the combination of NBIF and TRAIL may be a new therapeutic strategy for treating TRAIL-resistant glioma cells.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19+ lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34+ TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL.  相似文献   

19.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover.  相似文献   

20.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号