首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA binding by the Oct-1 protein is directed by its POU domain, a bipartite DNA-binding domain made up of a POU-specific (POUS) domain and a POU-homeo (POUH) domain, two helix-turn-helix-containing DNA-binding modules that cooperate in DNA recognition. Although the best-characterized DNA target for Oct-1 binding is the octamer sequence ATGCAAAT, Oct-1 also binds a number of different DNA sequence elements. For example, Oct-1 recognizes a form of the herpes simplex virus VP16-responsive TAATGARAT element, called the (OCTA-)TAATGARAT site, that lacks octamer site similarity. Our studies suggest two mechanisms by which Oct-1 achieves flexible DNA sequence recognition. First, an important arginine found in the Oct-1 POUS domain tolerates substitutions of its base contacts within the octamer site. Second, on the (OCTA-)TAATGARAT site, the POUS domain is located on the side of the POUH domain opposite from where it is located on an octamer site. This flexibility of the Oct-1 POU domain in DNA binding also has an impact on its participation in a multiprotein-DNA complex with VP16. We show that Oct-1 POUS domain residues that contact DNA have different effects on VP16-induced complex formation depending on whether the VP16-responsive element involved has overlapping octamer similarity or not.  相似文献   

2.
3.
4.
The octamer motif (ATTTGCAT) is an important regulatory element in eukaryotic gene expression. A previously unidentified protein that recognizes this motif has been isolated from the human B cell line, Daudi. The protein, which we term Ku-2, bears a close resemblance to the DNA-binding autoantigen Ku. Like Ku, it is a heterodimer with subunits of 83 and 72 kDa; antisera raised against either subunit of Ku cross-react with Ku-2. Two peptides have been sequenced and show a strong similarity to regions in the corresponding subunits of Ku. The sequences are not identical, however, suggesting that Ku-2 may be a B cell homologue of Ku. Both Ku and Ku-2 bind to the termini of DNA duplexes, but Ku-2 also binds to an internal octamer motif. It is not known whether Ku shares the latter property or whether the octamer binding is a consequence of sequence differences between the two proteins. Ku-2 does not react with antisera against the POU domain of the octamer-binding protein Oct-2, indicating that the DNA binding domains of the two proteins are dissimilar despite the ability of both to bind to the octamer motif. We discuss the evidence for the existence of a family of octamer-binding proteins related to Ku.  相似文献   

5.
6.
7.
POU-specific and POU-homeo domains of Oct3 were produced in Echerichia coli for characterization of DNA binding to the octamer sequence. POU domain protein including A, B and H domains could bind to the octamer sequence efficiently and specifically, and DNase I footprint analysis gave an indistinguishable protection pattern between recombinant POU protein of Oct3 and native Oct3 from undifferentiated P19 cells. Truncated mutants, which contained B-specific and H domains or the H domain only, showed no binding activity, indicating that both of POU-specific and POU-homeo domains are essential for binding activity to octamer sequence. Furthermore, a 6 amino acid deletion from the N-terminal region of the A-specific domain is enough to destroy the binding activity. As for trans-activation, the N-terminal region is essential and sufficient. Deletion of the N-terminal proline-rich region rapidly eliminated trans-activating activity. These data strongly indicate the stringent integrity requirements for both trans-activation and DNA-binding domains in Oct3.  相似文献   

8.
9.
10.
11.
The virtuoso of versatility: POU proteins that flex to fit   总被引:13,自引:0,他引:13  
  相似文献   

12.
To assess which residues of Oct-1 POU-specific (POUs) are important for DNA recognition and stimulation of adenovirus DNA replication we have mutated 10 residues of the POUs helix-turn-helix motif implicated in DNA contact. Seven of these turned out to have reduced DNA binding affinity. Of these, three alanine substituted proteins were found to have a changed specificity using a binding site selection procedure. Mutation of the first residue in the recognition helix, Gln44, to alanine led to a loss of specificity for the first two bases, TA, of the wild-type recognition site TATGC(A/T)AAT. Instead of the A, a T was selected, suggesting a new contact and a novel specificity. A change in specificity was also observed for the T45A mutant, which could bind to TATAC(A/T)AAT, a site hardly recognized by the wild-type protein. Mutation of residue Arg49 led to a relaxed specificity for three consecutive bases, TGC. This residue, which is critical for high affinity binding, is absent from the structurally homologous lambdoid helix-turn-helix motifs. Employing a reconstituted system all but two mutants could stimulate adenovirus DNA replication upon saturation. Mutation of residues Gln27 and Arg49 impairs the ability of the Oct-1 POU domain protein to enhance replication, with a concomitant loss of DNA contacts. Since the POU domain binds the precursor terminal protein-DNA polymerase complex and guides it to the origin, lack of stimulation may be caused by incorrect targetting of the DNA polymerase due to loss of specificity.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号