首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
VSG gene 118 is transcribed from a cotransposed pol I-like promoter   总被引:31,自引:0,他引:31  
C Shea  M G Lee  L H Van der Ploeg 《Cell》1987,50(4):603-612
  相似文献   

4.
The genes and transcripts of an antigen gene expression site from T. brucei   总被引:47,自引:0,他引:47  
  相似文献   

5.
6.
7.
8.
9.
10.
VSG gene expression site control in insect form Trypanosoma brucei.   总被引:8,自引:2,他引:6       下载免费PDF全文
  相似文献   

11.
12.
Trypanosoma brucei undergoes antigenic variation by periodically switching the expression of its variant surface glycoprotein (VSG) genes (vsg) among an estimated 20-40 telomere-linked expression sites (ES), only one of which is fully active at a given time. We found that in bloodstream trypanosomes one ES is transcribed at a high level and other ESs are expressed at low levels, resulting in organisms containing one abundant VSG mRNA and several rare VSG RNAs. Some of the rare VSG mRNAs come from monocistronic ESs in which the promoters are situated about 2 kilobases upstream of the vsg, in contrast to the polycistronic ESs in which the promoters are located 45-60 kilobases upstream of the vsg. The monocistronic ES containing the MVAT4 vsg does not include the ES-associated genes (esag) that occur between the promoter and the vsg in polycistronic ESs. However, bloodstream MVAT4 trypanosomes contain the mRNAs for many different ESAGs 6 and 7 (transferrin receptors), suggesting that polycistronic ESs are partially active in this clone. To explain these findings, we propose a model in which both mono- and polycistronic ESs are controlled by a similar mechanism throughout the parasite's life cycle. Certain VSGs are preferentially expressed in metacyclic versus bloodstream stages as a result of differences in ESAG expression and the proximity of the promoters to the vsg and telomere.  相似文献   

13.
Trypanosome variant surface glycoprotein genes expressed early in infection   总被引:11,自引:0,他引:11  
We have studied further the genes for trypanosomal variant surface glycoproteins expressed during a chronic infection of rabbits with Trypanosoma brucei, strain 427. We show that there are three closely related chromosomal-internal isogenes for VSG 121; expression of one of these genes is accompanied by the duplicate transposition of the gene to a telomeric expression site, also used by other chromosome-internal VSG genes. The 3' end of the 121 gene is replaced during transposition with another sequence, also found in the VSG mRNAs of two other variants. We infer that an incoming VSG gene duplicate recombines with the resident gene in the expression site and may exchange ends in this process. The extra expression-linked copy of the 121 gene is lost when another gene enters the expression site. However, when the telomeric VSG gene 221 is activated without duplication the extra 121 gene copy is inactivated without detectable alterations in or around the gene. We have also analysed the VSG genes expressed very early when trypanosomes are introduced into rats or tissue culture. The five genes identified in 24 independent switching events were all found to be telomeric genes and we calculate that the telomeric 1.8 gene has a 50% chance of being activated in this trypanosome strain when the trypanosome switches the VSG that is synthesized. We argue that the preferential expression of telomeric VSG genes is due to two factors: first, some telomeric genes reside in an inactive expression site, that can be reactivated; second, telomeric genes can enter an active expression site by a duplicative telomere conversion and this process occurs more frequently than the duplicative transposition of chromosome-internal genes to an expression site.  相似文献   

14.
15.
J R Young  J S Shah  G Matthyssens  R O Williams 《Cell》1983,32(4):1149-1159
Unlike many other T. brucei variable surface glycoprotein (VSG) genes, the IITat 1.3 gene is not duplicated when it is expressed. Analysis of the multiple copies of this gene present in all IITaR 1 trypanosome clones by restriction enzyme mapping and sequencing shows that the expressed copy may have arisen by duplication and transposition to a telomeric site, as is observed for those VSG genes whose expression is linked to duplication. The existence of a mechanism selecting between a number of complete telomeric VSG gene copies for expression is implied by these results. Comparisons of the nontelomeric copies of the IITat 1.3 gene are consistent with involvement of gene duplication and mutational drift in the evolution of new VSG genes.  相似文献   

16.
Variant surface glycoprotein (VSG) genes of African trypanosomes are expressed when they are inserted into one of several telomere-linked expression sites. We cloned and characterized an 11-kilobase (kb) DNA fragment located upstream of an expressed VSG gene. A DNA sequence of 1.8 kb that is located immediately upstream of the inserted VSG gene contains sequences homologous to the 76-base-pair repeats described as being upstream of VSG genes in Trypanosoma brucei (D. A. Campbell, M. P. Van Bree, and J. C. Boothroyd, Nucleic Acids Res. 12:2759-2774). There are no such sequences elsewhere in the 11-kb cloned region. Southern blot analysis using probes from the cloned region revealed multiple unlinked copies of the same or very similar regions. At least three of these are located near telomeres, and two have been shown to be used for the expression of known Trypanosoma equiperdum VSG genes. Like VSG genes, the upstream sequences themselves can be duplicated and deleted. The choice of expression site to be used by a duplicated VSG gene is nonrandom; the site used for expression of the parental VSG gene is strongly favored for use in the daughter variant. Furthermore, even when the parental expression site is not used, the VSG gene occupying it is replaced. Thus, an active expression site is a preferential target for gene conversion in the next variation event.  相似文献   

17.
18.
19.
Trypanosomatids are protozoan parasites that cause human and animal disease. Trypanosoma brucei telomeric ESs (expression sites) contain genes that are critical for parasite survival in the bloodstream, including the VSG (variant surface glycoprotein) genes, used for antigenic variation, and the SRA (serum-resistance-associated) gene, which confers resistance to lysis by human serum. In addition, ESs contain ESAGs (expression-site-associated genes), whose functions, with few exceptions, have remained elusive. A bioinformatic analysis of the ESAG5 gene of T. brucei showed that it encodes a protein with two BPI (bactericidal/permeability-increasing protein)/LBP (lipopolysaccharide-binding protein)/PLUNC (palate, lung and nasal epithelium clone)-like domains and that it belongs to a multigene family termed (GR)ESAG5 (gene related to ESAG5). Members of this family are found with various copy number in different members of the Trypanosomatidae family. T. brucei has an expanded repertoire, with multiple ESAG5 copies and at least five GRESAG5 genes. In contrast, the parasites of the genus Leishmania, which are intracellular parasites, have only a single GRESAG5 gene. Although the amino acid sequence identity between the (GR)ESAG5 gene products between species is as low as 15-25%, the BPI/LBP/PLUNC-like domain organization and the length of the proteins are highly conserved, and the proteins are predicted to be membrane-anchored or secreted. Current work focuses on the elucidation of possible roles for this gene family in infection. This is likely to provide novel insights into the evolution of the BPI/LBP/PLUNC-like domains.  相似文献   

20.
Some variable surface glycoprotein (VSG) genes of Trypanosoma brucei undergo duplication and transposition when they are expressed. We report here the cloning of cDNAs coding for two VSGs from the ILtar 1 repertoire. Analysis of the genomes of trypanosomes expressing these and other antigens shows that there is no additional copy of the sequences coding for eight VSG in expressing clones of trypanosomes, and reveals rearrangements analogous to those previously described for the gene for another VSG from this antigen repertoire. The data indicate that duplication does not accompany the expression of these VSG genes. Transposition to a specific expression site cannot be excluded, but would have to involve either a much larger segment of DNA, or movement to a region of much greater homology with the previous flanking sequences, than is observed for VSG genes that are duplicated when expressed. It is reasoned that the control of expression by coupled duplication and transposition is not sufficient to account for the selection of a single VSG gene for expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号