首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bauerle TL  Centinari M  Bauerle WL 《Planta》2011,234(5):1045-1054
We investigated responses of plant growth rate, hydraulic resistance, and xylem cavitation in scion-rootstock-combinations of Malus domestica L. cv. Honeycrisp scions grafted onto a high-shoot vigor (HSV) rootstock, (semi-dwarfing Malling111), or onto a low-shoot vigor (LSV) rootstock, (dwarfing Budagovsky 9), in response to substrate moisture limitation. Adjustments in xylem vessel diameter and frequency were related to hydraulic resistance measurements for high- versus low- vigor apple trees. We observed a greater tolerance to water deficit in the high-shoot compared to the low-shoot vigor plants under water deficit as evidenced by increased growth in several plant organs, and greater scion anatomical response to limited water availability with ca. 25% increased vessel frequency and ca. 28% narrower current season xylem ring width. Whereas water limitation resulted in greater graft union hydraulic resistance of high-shoot vigor trees, the opposite was true when water was not limiting. The graft union of the low-shoot vigor rootstock exhibited higher hydraulic resistance under well-watered conditions. Scions of high-shoot vigor rootstocks had fewer embolisms at low plant water status compared to scions of low-shoot vigor rootstocks, presumably as a result of large differences in xylem vessel diameter. Our results demonstrated that anatomical differences were related to shifts in hydraulic conductivity and cavitation events, a direct result of grafting, under limited soil water.  相似文献   

2.
The anatomy of the graft tissue between a rootstock and its shoot (scion) can provide a mechanistic explanation of the way dwarfing Malus rootstocks reduce shoot growth. Considerable xylem tissue disorganization may result in graft tissue having a low hydraulic conductivity (k(h)), relative to the scion stem. The graft may influence the movement of substances in the xylem such as ions, water and plant-growth-regulating hormones. Measurements were made on 3-year-old apple trees with a low-pressure flow system to determine k(h) of root and scion stem sections incorporating the graft tissue. A range of rootstocks was examined, with different abilities of dwarfing; both ungrafted and grafted with the same scion shoot cultivar. The results showed that the hydraulic conductivity (k(hroot)) of roots from dwarfing rootstocks was lower compared with semi-vigorous rootstocks, at least for the size class of root measured (1.5 mm diameter). Scion hydraulic conductivity (k(hs)) was linked to leaf area and also to the rootstock on to which it was grafted, i.e. hydraulic conductivity was greater for the scion stem on the semi-vigorous rootstock. Expressing conductivities relative to xylem cross-sectional areas (k(s)) did not remove these differences suggesting that there were anatomical changes induced by the rootstock. The calculated hydraulic conductivity of the graft tissue was found to be lower for grafted trees on dwarfing rootstocks compared to invigorating rootstocks. These observations are discussed in relation to the mechanism(s) by which rootstock influences shoot growth in grafted trees.  相似文献   

3.
This work studied the hydraulic characteristics and physiological behavior of two trifoliate orange (Poncirus trifoliata L. Raft) varieties—Flying Dragon (FD) and Rubidoux (RT)—with contrasting size-controlling potential when used as rootstocks for citrus trees. Thus, Valencia orange scions growing on RT root system develop about 40 % more biomass than scions on FD. The anatomical study of xylem root tissue of both rootstocks showed that the number of vessels per cross-sectional area in RT almost doubled that found in FD, whereas diameter distribution did not vary significantly. Hydraulic resistance determined in rootstocks, and bud union segments were, respectively, 2- and 3.4-fold higher in trees on FD than in trees on RT. Root systems accounted for 46.5 and 55.2 % of whole-plant hydraulic resistance, whereas bud union segments represented 7.5 and 14.6 % of this parameter, the dwarfing rootstock (FD) having the highest values. Reduced hydraulic conductance in plants on FD rootstock diminished water potential in high evaporative demand periods, causing a reduction in stomatal conductance with respect to plants on RT. This leads to lower net photosynthetic CO2 assimilation, which may affect biomass production. Translocation of 13C-labeled photoassimilates from leaves to roots was lower in plants on FD than in plants on RT, indicating that in the dwarfing rootstock (FD) there may be a vascular resistance to sucrose transport at the budding union level. Findings show that reduced hydraulic conductance may be the main cause of rootstock-induced dwarfing in citrus grafted onto FD.  相似文献   

4.
Homografting of Arabidopsis thaliana scions on stocks of A. thaliana and heterografting on other species were used to study the compatibility and the ontogeny of graft union formation. Highly compatible homografting with scions of young leafy inflorescence stems was obtained on stocks of inflorescence stems growing from large 3-month-old A. thaliana plants. Histologic analysis revealed four developmental stages of graft union formation in Arabidopsis homografting: (1) development of a necrotic layer, (2) callus proliferation in the grafted scion, (3) differentiation of new vascular tissues within the scion, and (4) a full vascular graft union formation between the scion and the stock. Vascular connections were formed within the callus bridge between rootstocks and scions 15 days after grafting. Heterografts of Arabidopsis on two members of Brassicaceae, cabbage (Brassica) and radish (Raphanus), showed partial incompatible interaction with a lower level of vascular differentiation. Arabidopsis grafting on tomato (Solanaceae) rootstock showed complete incompatibility and limited noncontinuous differentiation of new vascular tissues that did not cross the scion/stock boundary. Although lacking scion/stock vascular connections, Arabidopsis scions grafted onto tomato rootstock flowered and produced seeds. This may indicate some nonvascular functional connections between the two plants, probably of parenchyma cells, further emphasizing the usefulness of Arabidopsis as a model plant for studying various levels of the complicated scion/stock relationships expressed in grafting biology. Experiments with dye transport in the xylem showed that although in general there was an agreement between the histologic study and dye transport, in Arabidopsis homografts water transport frequency was lower than functional and histologic compatability. We conclude that homografting and heterografting of Arabidopsis inflorescence stems is a convenient and reproducible method for studying the fundamental cellular genetic and molecular aspects of grafting biology.  相似文献   

5.
Small interfering RNAs (siRNAs) are silencing signals in plants. Virus‐resistant transgenic rootstocks developed through siRNA‐mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock‐to‐scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV‐hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV‐hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long‐distance (1.2 m) transfer of PNRSV‐hpRNA‐derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for ‘using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'.  相似文献   

6.
7.
Zeatin and zeatin riboside were identified by full-scan gas chromatography-mass spectrometry (GC-MS) in xylem sap of clonal apple rootstocks (M.27, M.9 and MM.106). These rootstocks exhibit a wide range of control over tree size when grafted to a common scion. The concentrations of zeatin and zeatin riboside were measured by GC-MS selected ion monitoring (SIM) in shoot xylem sap and root pressure exudate obtained from these rootstocks and from trees of Fiesta scion grafted onto the rootstocks. Zeatin was the predominant cytokinin in xylem sap from the dwarfing rootstocks, M.27 and M.9, while zeatin riboside was the predominant cytokinin in xylem sap from the more invigorating rootstock MM.106. Cytokinin concentrations (ng ml–1) in root pressure exudate and shoot xylem sap, (i.e. from above the graft union in composite trees), increased with increasing vigour of the rootstock, irrespective of whether the plants were non-grafted rootstocks, or were composite plants of Fiesta scion grafted onto the rootstocks. Cytokinin content (ng shoot–1) of shoot sap differed with rootstock; the more invigorating (MM.106) had greater amounts of cytokinins than the more dwarfing (M.9 and M.27) rootstocks. These results are discussed in relation to possible influences of roots on the growth of shoots via cytokinin supplies in the xylem sap.  相似文献   

8.
9.
巴西橡胶树嫁接接合区接穗和砧木径向生长差异的研究   总被引:2,自引:0,他引:2  
采用树皮嫁接后不锯砧和光镜观察的方法,研究了巴西橡胶树(Hevea brasiliensis)嫁接后8个月的接合区接穗和砧木木质部径向生长的差异现象。结果表明,接合区接穗木质部的径向生长普遍地小于砧木,这种生长差异是由接穗和砧木亲本固有生长特性的差异引起的,与嫁接亲和性无关。(1)对于同一无性系,接穗的发育阶段决定其生长能力,幼态接穗新分化的木质部显著地大于老态接穗,而两类接穗旁边的砧木之间没有明显差别。(2)砧木生长势明显地影响接穗木质部的生长,砧木生长势越强,砧木和接穗的生长就越快,两者的径向差异也越大。(3)同一砧木上各品系接穗木质部生长差异取决于接穗自身的生长特性,砧木的生长不受接穗品系的明显影响。显微观察表明橡胶树的嫁接是亲和的,接穗新分化的木质部镶嵌在砧木新分化的木质部中,维管组织如导管上下连接畅通,砧穗树皮厚度一致,愈合良好。  相似文献   

10.

Background and Aims

Previous studies indicate that the size-controlling capacity of peach rootstocks is associated with reductions of scion water potential during mid-day that are caused by the reduced hydraulic conductance of the rootstock. Thus, shoot growth appears to be reduced by decreases in stem water potential. The aim of this study was to investigate the mechanism of reduced hydraulic conductance in size-controlling peach rootstocks.

Methods

Anatomical measurements (diameter and frequency) of xylem vessels were determined in shoots, trunks and roots of three contrasting peach rootstocks grown as trees, each with different size-controlling characteristics: ‘Nemaguard’ (vigorous), ‘P30-135’ (intermediate vigour) and ‘K146-43’ (substantially dwarfing). Based on anatomical measurements, the theoretical axial xylem conductance of each tissue type and rootstock genotype was calculated via the Poiseuille–Hagen law.

Key Results

Larger vessel dimensions were found in the vigorous rootstock (‘Nemaguard’) than in the most dwarfing one (‘K146-43’) whereas vessels of ‘P30-135’ had intermediate dimensions. The density of vessels per xylem area in ‘Nemaguard’ was also less than in ‘P30-135’and ‘K146-43’. These characteristics resulted in different estimated hydraulic conductance among rootstocks: ‘Nemaguard’ had higher theoretical values followed by ‘P30-135’ and ‘K146-43’.

Conclusions

These data indicate that phenotypic differences in xylem anatomical characteristics of rootstock genotypes appear to influence hydraulic conductance capacity directly, and therefore may be the main determinant of dwarfing in these peach rootstocks.Key words: Prunus, rootstock, vessel diameter, hydraulic conductance, dwarfing, xylem anatomy, Poiseuille–Hagen  相似文献   

11.
An anatomical study of roots and stems of five self-rooted cherry rootstocks with different growth control potentials was performed to compare their structure and xylem anatomy. The aim was to correlate anatomical parameters with rootstock dwarfing potential and theoretical hydraulic conductance (k h), and to evaluate the potential application of anatomical characteristics in the preselection process for prediction of ultimate tree vigor. One of the mechanisms of water transport efficiency reduction in dwarfing rootstock stems is from the rootstock xylem anatomy. Anatomical parameters of ??Gisela 5?? and ??Mazzard?? were typical for dwarfing and vigorous rootstocks, respectively, and were thus suggested as reference rootstocks. Significantly greater vessel diameter and frequency were found in invigorating and dwarfing rootstocks, respectively. Higher k h was obtained in roots, compared to stems, due to significantly larger vascular elements. Dwarfing rootstocks had lower k h due to small vessel lumens and percentage and, to a lesser extent, because of low wood/cortex ratios or percentage of wood. A higher percentage of wood or xylem in cherry roots and stems was not always positively correlated with their conductivity and vigor. Thus, these parameters cannot be reliably used in prediction of the ultimate vigor, although this method was previously suggested for some other fruit tree species. The most reliable anatomical parameters for that purpose proved to be vessel frequency, vessel lumen area, and percentage of vessels on wood cross section. These characteristics could thus be an effective way to estimate dwarfing capacity and could be applied in rootstock selection and breeding programs.  相似文献   

12.
Genetically engineered (GE) rootstocks may offer some advantages for biotechnology applications especially in woody perennial crops such as grape or walnut. Transgrafting combines horticultural grafting practices with modern GE methods for crop improvement. Here, a non-GE conventional scion (upper stem portion) is grafted onto a transgenic GE rootstock. Thus, the scion does not contain the genetic modification present in the rootstock genome. We examined transgene presence in walnut and tomato GE rootstocks and non-GE fruit-bearing scions. Mobilization of transgene DNA, protein, and mRNA across the graft was not detected. Though transgenic siRNA mobilization was not observed in grafted tomatoes or walnut scions, transgenic siRNA signal was detected in walnut kernels. Prospective benefits from transgrafted plants include minimized risk of GE pollen flow (Lev-Yadun and Sederoff, 2001), possible use of more than one scion per approved GE rootstock which could help curb the estimated US$136 million (CropLife International, 2011) cost to bring a GE crop to international markets, as well as potential for improved consumer and market acceptance since the consumable product is not itself GE. Thus, transgrafting provides an alternative option for agricultural industries wishing to expand their biotechnology portfolio.  相似文献   

13.
Light microscopy has been used to study the effect of dwarfingand semi-dwarfing apple rootstocks on the early developmentof bud-unions with 'Gala', and the anatomy of 2-year-old bud-unionsbetween 'Bramley' and the same rootstocks. The bridging of thecut edges of the cambia of bud and rootstock was achieved bydifferentiation of callus formed at an early stage in budding.New cambial cells were aligned at right angles to the pre-existingcambia, with their long axes horizontal. Subsequently-formedxylem adopted this arrangement, so that fibres and vessels werearranged obliquely to the axis of the stem. At the interfacebetween the bud and dwarfing rootstocks vessels with smallerthan normal diameter were formed, indicating the presence ofelevated levels of auxin in this region. In addition, littlexylem was produced in the adjacent rootstock tissue. In thecase of semi-dwarfing rootstocks, the rootstock produced normalxylem after a brief interruption. We suggest that failure ofauxin to cross the bud-union interface in the case of the dwarfingrootstocks leads to reduced rootstock xylem formation, and hencea poor supply of water and minerals to the scion, and this underliesthe dwarfing effect.Copyright 1994, 1999 Academic Press Apple, budding, dwarfing, anatomy, graft union  相似文献   

14.
Dwarfing of fruit trees is often achieved through the use of dwarfing rootstocks. Dwarf trees are characterized by sustained reductions in vegetative growth during the lifetime of the tree. The dwarfing mechanism is not well understood, but it has been hypothesized that hydraulic properties of the rootstock and the graft union are involved. It is hypothesized here that leaf- or stem-specific resistance of at least one hydraulic component of the water transport system would be negatively correlated with rootstock 'vigour', and this could be useful for selection of rootstocks. Hydraulic resistance (R) of fully grown apple trees on a variety of rootstocks of different 'vigours' was measured. Most measurements were with the evaporative flux (EF) method, where water uptake measured with sap flow sensors was related to the pressure gradient from soil (taken as pre-dawn leaf) and midday root (taken as covered root-sucker), stem (from covered leaf), and exposed and shaded leaf water potentials (Psi(l)). R of trees on dwarfing M9 rootstock was compared with that of more vigorous MM106 and MM111 rootstocks in Israel and Vermont, USA. In Israel, M9 consistently had higher leaf-specific hydraulic resistance (R(l)) in the soil to scion stem pathway, but this difference was only significant for one summer. R was larger in M9 between the root and stem, implicating the graft union as the site of increased resistance. In Vermont, R(l) of 9- and 10-year-old trees on six rootstocks of various vigours was not consistently related to vigour, and stem-specific resistance (R(s)) increased with increasing vigour. High pressure flow meter (HPFM) measurements gave a lower R than the EF method in all but one case, perhaps indicating a significant amount of xylem dysfunction in these trees, and demonstrated the increased resistivity of stem sections that included dwarf graft unions as compared with non-graft stem sections. It is concluded that stem- and leaf-specific R are not consistently positively correlated with dwarfing, although the increased resistivity of the graft union in dwarfing rootstocks may influence the transport of water and other elements across the graft union, and therefore be involved in the dwarfing mechanism.  相似文献   

15.
16.
Abstract

The effects of mutual grafting on the cadmium (Cd) accumulation characteristics of two ecotypes (farmland and mining) of the potential Cd-hyperaccumulator Solanum photeinocarpum were studied through a pot experiment for one month. Four treatments were used in the experiment: ungrafted farmland ecotype (F-CK), ungrafted mining ecotype (M-CK), the farmland ecotype as the scion grafted onto rootstocks of the mining ecotype (F-Scion), and the mining ecotype as the scion grafted onto rootstocks of the farmland ecotype (M-Scion). Mutual grafting increased the rootstock biomass of both S. photeinocarpum ecotypes. However, mutual grafting decreased the scion biomass of F-Scion compared with F-CK and M-CK, and the scion biomass of M-Scion was higher than that of M-CK and lower than that of F-CK. The Cd content in the rootstock of M-Scion increased compared with F-CK, and the Cd content in the rootstock of F-Scion increased compared with M-CK, but mutual grafting decreased the Cd content in scions of both S. photeinocarpum ecotypes. Mutual grafting increased Cd extraction by rootstocks of both S. photeinocarpum ecotypes, but decreased extraction by scions. Therefore, mutual grafting can increase Cd accumulation in S. photeinocarpum rootstocks but not increase Cd accumulation in S. photeinocarpum scions in a short period.  相似文献   

17.
Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long‐distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal‐ and self‐grafts of ABA‐deficient flacca mutant and wild‐type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under conditions, salinity resulted in long‐distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under conditions, a flacca rootstock decreased leaf area of stressed plants, presumably due to attenuated root‐to‐shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root‐to‐shoot ABA transport. Thus, long‐distance ABA transport can affect responses in distal tissues by changing local ABA concentrations.  相似文献   

18.
Apple (Malus × domestica Borkh.), like many fruit trees, cannot be propagated clonally from seed and is instead propagated by the grafting onto rootstocks. Rootstocks affect the growth of scions, but it is not known why. The circulation of some mRNAs throughout the phloem has recently been shown. To clarify whether RNAs are transported long distance through the graft union of apple trees, we analyzed cDNAs derived from shoot phloem cells by laser capture microdissection. We detected several mRNAs that have already been reported as phloem-transported RNAs in other plants. One of them, MpSLR/IAA14, was probed to transport a long distance through the graft union in grafted apple plant. These results suggest that a phloem RNA transport system may be involved in the effects of rootstocks on scion growth and cropping.  相似文献   

19.
Effect of rootstock on apple (Malus domestica) tree water relations   总被引:1,自引:0,他引:1  
The effects of rootstock on mid-season water relations, under orchard conditions of non-limiting soil moisture, were determined for bearing 'Empire' apple trees ( Malus domestica Borkh.) on the clonal rootstocks M9, M26, M7, MM106, and MM104 (most to least dwarfing) in their sixth and seventh growing seasons. Stem water potentials (ψstem) of trees on M9 and M26 were more negative at midday, under warm, sunny conditions, than were the trees on the other three rootstocks. However, change in ψstem per change in stem distance through the canopy (water potential gradient) did not vary among rootstocks at midday. There was no rootstock effect on diurnal variation in transpiration or stomatal conductance. Differences in water storage capacitance, relative to tree size, were determined in a separate study but did not account for the differences observed in ψstem. Calculated hydraulic conductivities of xylem water transport suggest that rootstocks differ in their ability to conduct water to the scion, but hydraulic conductivity of the scion was not affected by rootstock. Root-stock differences in hydraulic conductivity were not accounted for by differences in tree size.  相似文献   

20.
Whole-plant hydraulic conductance, shoot growth, and leaf photosynthetic properties were measured on kiwifruit vines with four clonal rootstocks to examine the relationship between plant hydraulic conductance and leaf stomatal conductance (gs) and to test the hypothesis that reduced hydraulic conductance can provide an explanation for reductions in plant vigour caused by rootstocks. The rootstocks were selected from four species of Actinidia and grafted with Actinidia chinensis var. chinensis 'Hort16A' (yellow kiwifruit) as the scion. Total leaf area of the scion on the least vigorous Actinidia rootstock, A. kolomikta, was 25% of the most vigorous, A. hemsleyana. Based on shoot growth and leaf area, the selections of A. kolomikta and A. polygama are low-vigour rootstocks, and A. macrosperma and A. hemsleyana are high-vigour rootstocks for A. chinensis. Whole-plant hydraulic conductance, the ratio of xylem sap flux to xylem water potential, was lower in the low-vigour rootstocks, reflecting their smaller size. However, leaf-area-specific conductance (Kl) and gs were both higher in the low-vigour rootstocks, the opposite of the expected pattern. Differences in Kl were found in the compartment from the roots to the scion stem, with no difference between rootstocks in the conductance of stems or leaves of the scion. There was no evidence that the graft union caused a significant reduction in hydraulic conductance of vines with low-vigour rootstocks. Leaf photosynthetic capacity did not vary between rootstocks, but photosynthesis and carbon isotope discrimination (Delta13C) under ambient conditions were higher in the low-vigour rootstocks because gs was higher. gs and Delta13C were positively correlated with Kl, although the mechanism for this relationship was not based on stomatal regulation of a similar xylem water potential because water potential varied between rootstocks. For Actinidia rootstocks, changes in Kl do not provide a direct explanation for changes in vigour of the scion. However, depending on the rootstock in question, changes in hydraulic conductance, biomass partitioning, and crown structure are involved in the response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号