首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Resource seasonality and fish diets in an Illinois stream   总被引:3,自引:0,他引:3  
Synopsis The purpose of this study was to evaluate the intensity of competition for food among 9 species of stream fishes that primarily eat aquatic invertebrates. The taxonomic and size composition, and numerical abundance of aquatic invertebrates were monitored for one year using drift and benthic samples. Diet data were obtained from stomachs of fishes captured at the same time and place that invertebrate sampling was done. Diet characteristics examined included taxonomic and size composition, number of prey per fish, and diet breadth. Drifting invertebrates were more abundant early in the year (March–June) than later (July–January). The summer-early fall scarcity of invertebrates was especially notable among those>3.6 mm long, which comprised the bulk of prey found in fish stomachs. Average prey size eaten by a fish species was positively correlated with fish mouth size, but interspecific overlap in prey size was extensive. Cyprinids as a group (5 species) ate proportionally fewer small (< 3.6 mm long) prey from July to January than did the centrarchids and stonecat. Taxonomic compositions of available invertebrates and fish diets varied markedly among sampling dates, but the use of prey taxa by fishes was not correlated with the availability of those taxa. Use of aquatic prey taxa was generally similar among fish species, but cyprinids as a group ate proportionally more terrestrial prey from July to January than did the centrarchids and stonecat. Diet breadths for all species increased as food levels declined, indicating that these fishes experienced resource depression. Food scarcity was evidently more severe for cyprinids since their stomachs contained few prey through the summer and fall relative to the centrarchids and stonecat. Though the fish species studied probably compete for food in the summer and fall, this competition did not account for the community structure observed.  相似文献   

2.
Synopsis Although they are the oldest and most diverse members of the subphylum, the fishes have relatively few nematode parasites in comparison with other vertebrate classes. It is hypothesized that this paucity of parasite species has occurred because nematode parasites first evolved in terrestrial hosts and only a few lines of these parasites were able to transfer to fish after the appearance of heteroxeny (use of intermediate hosts) and paratenesis (use of transport hosts). The inability of nematodes to initiate parasitism in aquatic ecosystems restricted fish parasites mainly to forms first adapted to terrestrial vertebrates and at the same time deprived large groups of aquatic invertebrates such as the crustaceans, annelids and molluscs of a nematode parasite fauna.Invited editorial  相似文献   

3.
Amphibious animals are adapted for both aquatic and terrestrial habitats. The conflicting requirements for dual habitats are perhaps most pronounced in the air‐breathing fishes, which represent an intermediate stage between the totally aquatic habitat and terrestrial colonization. A key requirement for amphibious fishes is terrestrial locomotion. The different densities and compositions of air and water impose constraints for efficient terrestrial locomotion that differ from those required for aquatic locomotion. I investigated terrestrial locomotion in a small South African fish, Galaxias ‘nebula’, by exposing 60 individual fish to air in specially designed raceways and quantifying movement type and occurrence as a function of availability of water, fish size and environmental temperature. Nebula showed a sustained undulating form of terrestrial locomotion characteristic of amphibious fishes and also a transient ballistic locomotion (jumps) typical of fully aquatic species. Terrestrial movement was influenced by fish size, with medium‐sized fish undertaking more jumps towards water, and fewer jumps away from water, than their smaller or larger conspecifics. In contrast, axial undulation was mainly influenced by temperature. However, there was no consistent pattern in temperature effects presumably because temperature is just one of a suit of environmental factors that may affect terrestrial locomotion. Nebula's amphibious adaptations allow it to cope with the unpredictability inherent in its natural environment.  相似文献   

4.
J. Santamarina 《Hydrobiologia》1993,252(2):175-191
The food resource use of a stream in NW Spain by fish (Salmo trutta L. and Anguilla anguilla L.), birds (Cinclus cinclus L. and Motacilla cinerea L.) and mammals (Galemys pyrenaicus G. and Neomys anomalus C.) was studied. Data on seasonal diets and stream benthos prey were used to determine prey selection patterns.Caddisfly larvae are the main resource for Cinclus and Galemys, but these predators also consumed other benthic prey. Salmo fed on a wide range of benthic invertebrates, emergent pupae and terrestrial prey, whereas Anguilla consumed primarily benthic invertebrates, especially Lumbricids. Neomys fed mainly on terrestrial prey (Gasteropods and Lumbricids), but also consumed aquatic prey. Motacilla captured aquatic insects both in larval and aerial stages, as well as terrestrial prey.Both prey availability and selection led to seasonal differences in the use of food resources. All species showed a marked prey selection of aquatic taxa. Prey size plays an important role in this selection, most species consuming the largest of available prey sizes. In spite of the fact that all species feed upon freshwater invertebrates, substantial resource partitioning was observed in all seasons. This partitioning may be attributable to morpholological and physiological differences. Nevertheless, Anguilla and Galemys, two quite different animals, did feed on the same prey much of the time.  相似文献   

5.
Invertivores fishes are an important component of neotropical streams and they represent a link between aquatic invertebrates and piscivorous species. This study evaluated the breadth diet and interspecific food overlap of nine invertivores fish species during three consecutive hydrological phases: falling (December/07, January/08, February/08 and March/08), low (April/08) and rising waters (June/08), in two sections of a Venezuelan neotropical stream, which were located at different elevation, high watershed (HW) and low watershed (LW). The fishes were collected with a beach seine (5mm mesh) between 8:00 and 11:00 hours. The diet of each species was evaluated using an index of relative importance (IRI), which includes as variables the number, weight and occurrence frequency of food items consumed. The Levin' index (B ) and Morisita (IM) were used to estimate the breadth diet and interspecific food overlap, respectively. All estimations were made using the numeric proportion of preys. Nine fish species were captured, eight Characiformes, of which three were captured in HW (Knodus deuteronoides, Creagrutus bolivari and C. melasma) and five in LW (Thoracocharax stellatus, Moenkhausia lepidura, Cheirodon pulcher, Ctenobrycon spilurus and Aphyocharax alburnus), and one Cyprinodontiformes (Poecilia reticulata), which was also found in HW. In HW aquatic insects were the main resource consumed by fishes while plant material and terrestrial arthropods were secondary resources. In LW the fishes ingested all of these items in addition to zooplankton (Copepoda, Cladocera and larval stages of Decapoda). However, there was a temporal replacement with a predominance of zooplankton in falling and low water. In general, the breadth diet decreased during the falling water in both sections and increased in rising water. However, the average breadth diet was higher in HW. The interspecific food overlap was high in HW while low values were more frequent in LW and its temporal variation was opposed in both sections during almost all the sampling period.  相似文献   

6.

Background

Riparian habitats are subjected to frequent inundation (flooding) and are characterised by food webs that exhibit variability in aquatic/terrestrial subsidies across the ecotone. The strength of this subsidy in active riparian floodplains is thought to underpin local biodiversity. Terrestrial invertebrates dominate the fauna, exhibiting traits that allow exploitation of variable aquatic subsidies while reducing inundation pressures, leading to inter-species micro-spatial positioning. The effect these strategies have on prey selection is not known. This study hypothesised that plasticity in prey choice from either aquatic or terrestrial sources is an important trait linked to inundation tolerance and avoidance.

Method/Principal Findings

We used hydrological, isotopic and habitat analyses to investigate the diet of riparian Coleoptera in relation to inundation risk and relative spatial positioning in the floodplain. The study examined patch scale and longitudinal changes in utilisation of the aquatic subsidy according to species traits. Prey sourced from terrestrial or emerging/stranded aquatic invertebrates varied in relation to traits for inundation avoidance or tolerance strategies. Traits that favoured rapid dispersal corresponded with highest proportions of aquatic prey, with behavioural traits further predicting uptake. Less able dispersers showed minimal use of aquatic subsidy and switched to a terrestrial diet under moderate inundation pressures. All trait groups showed a seasonal shift in diet towards terrestrial prey in the early spring. Prey selection became exaggerated towards aquatic prey in downstream samples.

Conclusions/Significance

Our results suggest that partitioning of resources and habitat creates overlapping niches that increase the processing of external subsidies in riparian habitats. By demonstrating functional complexity, this work advances understanding of floodplain ecosystem processes and highlights the importance of hydrological variability. With an increasing interest in reconnecting rivers to their floodplains, these invertebrates represent a key functional element in ensuring that such reconnections have demonstrable ecological value.  相似文献   

7.
Studies on resource sharing and partitioning generally consider species that occur in the same habitat. However, subsidies between linked habitats, such as streams and riparian zones, create potential for competition between populations which never directly interact. Evidence suggests that the abundance of riparian consumers declines after fish invasion and a subsequent increase in resource sharing of emerging insects. However, diet overlap has not been investigated. Here, we examine the trophic niche of native fish, invasive fish, and native spiders in South Africa using stable isotope analysis. We compared spider abundance and diet at upstream fishless and downstream fish sites and quantified niche overlap with invasive and native fish. Spider abundance was consistently higher at upstream fishless sites compared with paired downstream fish sites, suggesting that the fish reduced aquatic resource availability to riparian consumers. Spiders incorporated more aquatic than terrestrial insects in their diet, with aquatic insects accounting for 45–90% of spider mass. In three of four invaded trout rivers, we found that the average proportion of aquatic resources in web‐building spider diet was higher at fishless sites compared to fish sites. The probability of web‐building and ground spiders overlapping into the trophic niche of invasive brown and rainbow trout was as high as 26 and 51%, respectively. In contrast, the probability of spiders overlapping into the trophic niche of native fish was always less than 5%. Our results suggest that spiders share resources with invasive fish. In contrast, spiders had a low probability of trophic overlap with native fish indicating that the traits of invaders may be important in determining their influence on ecosystem subsidies. We have added to the growing body of evidence that invaders can have cross‐ecosystem impacts and demonstrated that this can be due to niche overlap.  相似文献   

8.
Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0+ year Atlantic salmon and brown trout and 1+ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1+ and 2+ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1+ and 2+ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2+ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0+ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.  相似文献   

9.
  1. Drying intermittent stream networks often have permanent water refuges that are important for recolonisation. These habitats may be hotspots for interactions between fishes and invertebrates as they become isolated, but densities and diversity of fishes in these refuges can be highly variable across time and space.
  2. Insect emergence from streams provides energy and nutrient subsidies to riparian habitats. The magnitude of such subsidies may be influenced by in-stream predators such as fishes.
  3. We examined whether benthic macroinvertebrate communities, emerging adult insects, and algal biomass in permanent grassland stream pools differed among sites with naturally varying densities of fishes. We also manipulated fish densities in a mesocosm experiment to address how fishes might affect colonisation during recovery from hydrologic disturbance.
  4. Fish biomass had a negative impact on invertebrate abundance, but not biomass or taxa richness, in natural pools. Total fish biomass was not correlated with total insect emergence in natural pools, but orangethroat darter (Etheostoma spectabile) biomass was inversely correlated with emerging Chironomidae biomass and individual midge body size. The interaction in our models between predatory fish biomass and date suggested that fishes may also delay insect emergence from natural pools, altering the timing of aquatic–terrestrial subsidies.
  5. There was an increase over time in algal biomass (chlorophyll-a) in mesocosms, but this did not differ among fish density treatments. Regardless, fish presence in mesocosms reduced the abundance of colonising insects and total invertebrate biomass. Mesocosm invertebrate communities in treatments without fishes were characterised by more Chironomidae, Culicidae, and Corduliidae.
  6. Results suggest that fishes influence invertebrates in habitats that represent important refuges during hydrologic disturbance, hot spots for subsidy exports to riparian food webs, and source areas for colonists during recovery from hydrologic disturbance. Fish effects in these systems include decreasing invertebrate abundance, shifting community structure, and altering patterns of invertebrate emergence and colonisation.
  相似文献   

10.
Synopsis Pearl dace, Semotilus margarita, are common in slow-moving channels and pools of the headwaters of the Brokenhead River. From May to September age groups 0, 1 and 2+ were partially segregated in space based on water depth with age 0 occupying shallow pools and shallow channels. Age 1 were abundant in shallow pools and deep channels while age 2+ occurred in deep channels and deep pools. In November all age groups coexisted in deep pools. Pearl dace are omnivorous consuming invertebrates, plant material, and detritus. From May to September age groups 0 and 1 consumed mainly terrestrial invertebrates (Diptera, Hymenoptera, Thysanoptera) but age 1 consumed more detritus than age 0. Age 2+ consumed mainly aquatic Diptera larvae. Although all ages consumed aquatic insects almost exclusively in November differences in diet between age groups still existed. Younger fish fed higher in the water column than older fish. Intraspecific resource partitioning of food and space occurs between age groups and this combined with the omnivorous diet is highly adaptive to the headwaters of streams.  相似文献   

11.

Aim

The spatial distribution of ectotherms is strongly dependent on the temperature of their environments. In temperate lakes, fishes with different thermal optima can become spatially segregated during summer stratification. This habitat partitioning, or niche complementarity, may play a role in the coexistence of trophically similar species; however, the extent of partitioning is dependent on the resources available within each habitat. Although habitat partitioning of fish thermal guilds has been studied in individual lakes, broad-scale patterns of spatial overlap and segregation are not yet understood. In this study, we explore the patterns and drivers of spatial overlap among thermal guilds (cold-, cool-, and warm-water) at a broad scale.

Location

Ontario, Canada.

Methods

We built a multivariate regression tree to explore patterns and environmental drivers of spatial overlap in freshwater fishes across three thermal guilds from 438 lakes.

Results

We identified five clusters of lakes exhibiting different patterns of spatial overlap among the three thermal guilds. Temperature (growing degree days) and maximum lake depth were strong drivers of the spatial overlap patterns.

Main Conclusions

These findings provide a better understanding of broad-scale patterns of spatial overlap and allow us to predict how spatial overlap, and ultimately species interactions and competition, may change under a warming climate.  相似文献   

12.
Understanding trophic relationships of fish in estuarine ecosystem is an important element for sustainable resource management. This study examined the feeding habits of 29 dominant fish species, characterized the trophic guilds, assessed the impact of season and clarified the role of diets in structuring the fish community in the mouth region of Pattani Bay, Thailand. Samples of 5792 fishes collected monthly by gillnets from March 2019 to February 2020 were used for stomach content analyses. It was found that the number of food types and fullness index differed between fish taxa (P < 0.001). Most fishes were specialist feeders feeding on specific food components and were categorized into five trophic guilds: piscivore, shrimp-fish feeder, polychaete feeder, zooplanktivore and planktivore. Six species were piscivorous, considered as apex predators, that fed almost entirely on fishes. High diet overlaps among some species (>0.6) were recorded. Not much variation in seasonal guilds was observed: four guilds in the dry season, three in the moderate rainy season and four in the rainy season. Some species remained in the same guild the whole year round, but some fishes changed seasonally. Two fish communities from different regions of the bay were segregated based on feeding habits. The inner bay community comprised mainly copepod and plankton feeders, but there were more piscivores in the deeper bay mouth area. Results from this study help us to understand the feeding habits and trophic guilds of dominant fish species at the mouth of this tropical estuarine bay.  相似文献   

13.
The diet of the smooth-hound shark, Mustelus mustelus , from the Gulf of Gabès (southern Tunisia, central Mediterranean Sea) was investigated with respect to fish size and season. Stomach contents were analyzed from 540 specimens with total lengths ranging from 34 to 158.5 cm. Of the total number of stomachs examined, 63 were empty (11.67%). Smooth-hound shark fed mainly on crustaceans, fishes and cephalopods. Sipunculids, polychaetes and echinoderms were occasional preys. No differences were found between the diets of males and females. Ontogenetic changes in diet of M. mustelus were apparent, with crustaceans forming a greater proportion of the diet of smaller sharks. Both teleosts and molluscs increased in importance with increasing shark size. Consumptions of polycheates, sipunculids and echinoderms were not related to predator size. Prey diversity also increased with size, with large and mobile prey species found more commonly in the diet of larger sharks. The limited overlap in the dietary compositions of juveniles, subadults and adults suggests the possibility of resource partitioning. Seasonality in food habits was in accordance with the dynamics of the predator and the prey species.  相似文献   

14.
Synopsis Mudminnows, Umbra limi, were euryphagic carnivores during the ice-free period consuming invertebrates of terrestrial and aquatic origins. In winter, diversity and amount of food eaten were reduced. Age 0 fish consumed aquatic invertebrates as did males aged 1 and 2+ but females aged 1 and 2+ consumed mainly fishes. In the laboratory mudminnows were able to capture small fish at temperatures of 12.6° C and less. Their rates of digestion of fish prey varied directly with temperature and estimates of time for 100%, gastric evacuation ranged from 161 h at 1.1° C to 26 h at 12.6° C. The ability to forage actively during winter and to digest food relatively rapidly at cold temperatures are seen as mechanisms to broaden the niche along dimensions of resources utilized and time, thereby increasing the chances of survival and reproduction in an environment with high temporal heterogeneity.  相似文献   

15.
In arid regions, spring-fed habitats are frequently the only year-round source of surface water and are essential habitats for aquatic organisms and primary water sources for terrestrial animals and human settlements. While these habitats have been relatively well-studied in some regions, those of the southern Sonoran Desert have received little attention. In 2008 and 2009, we documented the biodiversity of aquatic animals at 19 sites across three arid mountain ranges in Sonora, Mexico, characterized macrohabitat types, examined seasonal variation in aquatic invertebrate communities, and explored the effects of an exotic fish (tilapia) on native communities. We documented >220 aquatic animal species, including several new species and range extensions for others. Macrohabitat type (oasis, tinaja, riffle, and seep) was more important than geographic location in structuring aquatic invertebrate communities at the scale of our study area (~9,000 km2). We found little evidence of predictable seasonal variation in invertebrate communities, despite dramatic hurricane-induced flooding. Aquatic vertebrates were not diverse across the study region (4 amphibian species and 2 species each of fishes and reptiles), but were often locally abundant. Presence of non-native tilapia at one site was associated with reduced abundances of native leopard frogs and reduced richness and density of native aquatic invertebrates. The most pressing aquatic habitat conservation concerns in the region, as in other deserts, are groundwater withdrawal, unmanaged recreational visitation, and the introduction of exotic species. Spring-fed habitats around the world have been called hotspots of freshwater biodiversity, and those of the Sonoran Desert are no exception.  相似文献   

16.
The feeding habits of two sympatric species pairs of demersal fish ( Mullus barbatus-Mullus surmuletus, Serranus cabrilla-Serranus hepatus ) which occupy the shallow coastal area (25–30 m) in Iraklion Bay were investigated from samples collected on a monthly basis (August 1990 to August 1992). Stomach content analyses revealed that all of them were carnivores, feeding mainly on benthic invertebrates, and that each species consumed a narrow range of prey species with no significant dietary overlap. The morphology of their feeding apparatus was compared to examine the effect of any morphological differences on food selection and resource partitioning between the fish species. The species could be distinguished on the basis of the size of their mouth gape, the number of gill rakers and the length of their intestine. This study shows that each species pair follows a different strategy segregating along food niche dimensions. In particular, M. barbatus and M. surmuletus segregate their feeding niche consuming different prey taxa with similar sizes whereas S. cabrilla and S. hepatus differ considerably with respect to the degree to which prey species contribute to their diets coupled with differences in mean prey sizes.  相似文献   

17.
The African bonytongue, Heterotis niloticus (Osteoglossidae), is an important fisheries and aquaculture species in West Africa. This species has frequently been characterized either as an omnivore, insectivore or detritivore, the latter, in part, because of its benthic feeding habitats and possession of a gizzard (thick-walled pyloric stomach). We examined diets of two populations of H. niloticus in the Sô River in southern Benin. A population from the river channel and seasonally flooded marginal plains was dominated by juvenile and subadult size classes. Adults size classes were common in a second population from Lake Hlan, a natural lake in the river floodplain located upstream from the channel study region. Heterotis of all sizes consumed a variety of food resources, ranging from aquatic invertebrates to small seeds. Aquatic invertebrates composed a large proportion of the diets of juveniles, and adults consumed a mixture of aquatic invertebrates, seeds, and detritus. Seasonal dietary variation was observed in both populations, and diet breadth was not significantly different between populations. Aquatic invertebrates remained significant in diets of larger size classes; diets of fish between 100 and 200 mm began to include seeds and detritus, with a marked increase in the volumetric proportion of detritus in diets of fish between 300 and 400 mm in Lake Hlan and between 500 600 mm in the river. Relative gut length was inversely related to body size, which supports the notion that Heterotis is an omnivore and not a specialized detritivore. The thick-walled gizzard of Heterotis, which generally contained sand, probably aids digestion of seed coats. Because Heterotis consume mostly invertebrates and grass seeds in shallow waters of seasonal aquatic habitats and lakes the river floodplain, foraging success and fishery production should be strongly dependent on the annual flood pulse.  相似文献   

18.
Blue catfish Ictalurus furcatus and channel catfish Ictalurus punctatus , two large-bodied piscivore-omnivores in Lake Texoma, Texas-Oklahoma, U.S.A., showed very high overlap in food use, but substantial differences in use of habitat during the year. Both species primarily ate fishes, aquatic insects, vegetation and detritus, terrestrial insects, seeds and zooplankton, with overall overlap = 98%. Diet breadth indices were very similar (blue catfish=4.31, channel catfish = 4.53). Quantitative and qualitative feeding varied seasonally and food habits changed ontogenetically. Feeding intensity was greatest in winter and lowest in late summer. Aquatic insects were eaten more from May to October and fishes more in winter. At body sizes from 100 to 299 mm Ls , both species primarily ate aquatic insects, terrestrial insects, fishes or zooplankton, whereas the diets of individuals >300 mm Ls of both species were dominated by fishes. Overall, their overlap in distribution across major habitat types was only 58%, with blue catfish most abundant in deep water offshore, and channel catfish more common in shallow cove habitats. Blue catfish that did occur in coves were in the deeper parts of those habitats, essentially not occurring in the littoral zone. In lakes without blue catfish, channel catfish are widely dispersed in various habitats and it is suspected that displacement of channel catfish by blue catfish may influence habitat differences of the two species in Lake Texoma. Because the spatial separation of the species also reflects their typical interspecific differences in unimpounded drainages, however, the habitat differences observed in Lake Texoma probably also reflect evolved, historical differences in ecology of the two species.  相似文献   

19.
Pattern and process in the geographical ranges of freshwater fishes   总被引:2,自引:0,他引:2  
North American freshwater fishes were studied to determine whether they displayed the same relationships between log (geographical range size) and log (body size) and the same pattern of range shape as found among North American birds and mammals. The forces that produce these patterns were also investigated. The log (geographical range size) : log (body size) relationship was analysed for 121 North American freshwater fish species. Thirty‐two imperilled species were compared with 89 non‐imperilled species to determine if the overall relationship could result from differential extinction. Range geometries were analysed, within and among habitat guilds, to determine if general patterns could be detected. The log (geographical range size) : log (body size) pattern among freshwater fish species was triangular and qualitatively similar to that found for North American birds and mammals. The results suggest that below a minimum geographical range, the likelihood of extinction increases dramatically for freshwater fishes and that this minimum range size increases with body size. The pattern of fish species’ range shapes differs from that found for other North American vertebrate taxa because, on average, fish possess much smaller ranges than terrestrial species and most fish species’ geographical ranges extend further on a north–south axis than on an east–west axis. The log (geographical range size) : log (body size) pattern reveals that fish species’ geographical ranges are more constrained than those of terrestrial species. The triangular relationship may be caused by differential extinction of species with large bodies and small geographical ranges as well as higher speciation rates of small‐bodied fish. The restricted geographical ranges of freshwater fishes gives them much in common with terrestrial species on oceanic islands. Range shape patterns within habitat guilds reflect guild‐specific historical and current ecological forces. The overall pattern of range shapes emerges from the combination of ecologically different subunits.  相似文献   

20.
The three largest water bodies of East Africa, Lake Victoria, Tanganyika, and Malawi contain an estimated number of 2,000 endemic cichlid fish species, in addition, to a mostly uncounted wealth of invertebrates. While the terrestrial diversity is reasonably well protected, as economic and touristic interests coincide with biological conservation strategies, this is not the case for most African lakes and rivers. Nonetheless, it must be promoted that these aquatic ecosystems also deserve protection. Conservation strategies for aquatic biota have so far been the same as for terrestrial environments, i.e., by declaring biodiversity hotspots national parks. Such parks also contain rivers and lake shores. Here, I argue that it seems questionable that this strategy will work, given strong micro-geographic structure of the species flocks and the great degree of local endemism. I suggest a novel strategy for protecting African Lake communities that accounts for local endemism, derived from recent molecular phylogenetic and phylogeographic studies on East African cichlid fishes. While connectivity is the major problem for terrestrial and marine national parks, to ensure a large enough effective population size of the protected animals, this is not the case in most taxa of African rivers and lakes, where local endemism prevails. For example, most littoral cichlid species are subdivided into numerous distinct “color morphs” with restricted distribution, and unlike marine fishes with planktonic larvae display brood care with small offspring numbers. It is argued that the establishment of “micro-scale protected areas,” a large number of small stretches of strictly protected coast line, each only some hundreds of meters long, is likely to work best to preserve the littoral communities in African lakes. Such protected zones can sustain a reasonably effective population size of littoral species, serve as protected spawning ground or nursery area for pelagic species, and at the same time re-seed neighboring populations that are exploited continuously. As long-term stability of littoral fishing grounds is in the immediate interest of village communities, such small protected areas should be managed and controlled by the local communities themselves, and supervised by governmental institutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号