首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Antibodies prepared against chemically synthesized peptides predicted from the DNA sequence have been used to detect human mitochondrial gene products. In particular, antibodies directed against either the NH2-terminal decapeptide or the COOH-terminal undecapeptide of cytochrome c oxidase subunit II (COII) were both very effective in immunoprecipitating the previously identified COII polypeptide from an SDS lysate of mitochondria from HeLa cells. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative polypeptide encoded in the unidentified reading frame A6L, which overlaps the ATPase 6 gene, immunoprecipitated specifically a component (#25) of the HeLa cell mitochondrial translation products; antibodies directed against the NH2-terminal octapeptide also precipitated protein 25, although less efficiently. The size of protein 25, as estimated from its electrophoretic mobility, is compatible with its being the unidentified reading frame A6L product. Furthermore, a fingerprinting analysis of this protein after trypsin digestion has given results consistent with this identification.  相似文献   

2.
Isolated rat hepatocytes were labelled with [35S]methionine, dissolved in Triton X-100-containing buffer, and incubated with antibodies against rat liver cytochrome c oxidase. After separation by dodecyl sulfate-gel electrophoresis the fluorogram of immunoprecipitated proteins showed two labelled bands with apparent molecular weights of 52000 and 182000. The immunological relationship of the two proteins to cytochrome c oxidase was demonstrated by immunocompetition with the isolated enzyme and with purified subunits IV-VIII. Although the precursor nature of the two described proteins for cytoplasmically synthesized subunits of cytochrome c oxidase cannot be excluded, the following observations do not support this assumption: 1) The amount of incorporated radioactivity is too high; 2) they are exclusively located with the microsomal fraction; 3) the turnover is rather slow, compared to that of known precursor proteins.  相似文献   

3.
Isolated cytochrome c oxidase was fractionated by native-gel electrophoresis in Triton X-100, and a preparation of enzyme almost completely free of the usual impurities was recovered. This fraction was used to generate antibodies specific to cytochrome c oxidase. These antibodies inhibited cytochrome c oxidase activity rapidly and completely and immunoprecipitated an enzyme containing seven different subunits from detergent-solubilized mitochondria or submitochondrial particles. Reaction of detergent-solubilized cytochrome c oxidase with [35S]diazobenzenesulfonate labeled all seven subunits although I and VI were much less reactive than the other five components. When cytochrome c oxidase was immunoprecipitated from mitochondria which had been reacted with [35S]DABS, subunits II and III were the only components labeled. When the complex was immunoprecipitated from labeled submitochondrial particles, II, III, IV, V, and VII were all labeled. Polypeptides I and VI were not labeled from either side of the membrane. These results confirm earlier studies which showed that cytochrome c oxidase spans the mitochondrial inner membrane and is asymmetrically arranged across this permeability barrier.  相似文献   

4.
Rat liver cytochrome c oxidase (ferrocytochrome c: oxygen oxidoreductase; EC 1.9.3.1) was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis into 12 different polypeptide chains. Specific antisera against the holoenzyme and against purified subunits IV and VIII were used to characterize the enzyme complex. The antiserum against subunit IV precipitates from sodium dodecyl sulfate-dissociated mitochondria only subunit IV and from Triton X-100-dissolved mitochondria all 12 polypeptide chains, indicating their integral location within the enzyme complex. Different antisera against the holoenzyme only precipitate subunits IV, V and VIb from sodium dodecyl sulfate-dissociated mitochondria, suggesting the location of these subunits on the surface layer of the complex. Subunit VIII is thought to be located within the complex, since a specific antiserum does not precipitate the complex. The amino acid composition of all 12 protein subunits is different, thus excluding their origin from proteolytic degradation. The proteolytic degradation of subunit IV into IV during isolation of the enzyme was corroborated by the very similar amino acid composition of both proteins.  相似文献   

5.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

6.
A discontinuous gradient polyacrylamide gel electrophoresis under nondenaturing conditions has been used to demonstrate monodispersity of procaryotic and eucaryotic cytochrome c oxidase preparations. Alkaline treated bovine enzyme which contains nine subunits as analysed by subsequent discontinuous SDS-polyacrylamide gel electrophoresis is a monodisperse dimer in 0.1% Triton X-100 and a monomer in 0.1% dodecyl maltoside. The Mr-values corrected for bound detergent are 286,000 in Triton X-100 and 152,000 in dodecyl maltoside respectively. The two-subunit bacterial cytochrome c oxidase of Paracoccus denitrificans is proved to be a monomer with a corrected Mr of 76,000 in both nonionic detergents Triton X-100 and dodecyl maltoside.  相似文献   

7.
S Leterme  M Boutry 《Plant physiology》1993,102(2):435-443
NADH:ubiquinone reductase (EC 1.6.19.3), or complex I, was isolated from broad bean (Vicia faba L.) mitochondria. Osmotic shock and sequential treatment with 0.2% (v/v) Triton X-100 and 0.5% (w/v) [3-cholamidopropyl)dimethylammonio]-1-propanesulfate (CHAPS) removed all other NADH dehydrogenase activities. Complex I was solubilized in the presence of 4% Triton X-100 and then purified by sucrose-gradient centrifugation in the presence of the same detergent. The second purification step was hydroxylapatite chromatography. Substitution of CHAPS for Triton X-100 helped remove contaminants such as ATPase. The high molecular mass complex is composed of at least 26 subunits with molecular masses ranging from 6000 to 75,000 kD. The purified complex I reduced ferricyanide and ubiquinone analogs but not cytochrome c. NADPH could not substitute for NADH as an electron donor. The KM for NADH was 20 microM at the optimum pH of 8.0. The NH2-terminal sequence of several subunits was determined, revealing the ambiguous nature of the 42-kD subunit.  相似文献   

8.
The cytochrome d complex is a component of the aerobic respiratory system of Escherichia coli. The enzyme functions as a terminal oxidase, oxidizing ubiquinol-8 within the cytoplasmic membrane and reducing oxygen to water. The enzyme is of particular interest because it is a coupling site in the electron transfer chain. The electron transfer reaction catalyzed by this enzyme is coupled to the translocations of protons across the membrane (H+/e-approximately equal to 1). The oxidase contains two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, with molecular weights of 58,000 and 43,000. In this paper, the question of the quaternary structure is addressed. Quantitative N-terminal analysis of the isolated enzyme and relative mass quantitation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate the subunits are present in equimolar amounts. Sedimentation velocity and sedimentation equilibrium studies were used to characterize the hydrodynamic properties of the purified enzyme solubilized in Triton X-100, under conditions where the enzyme is active. It is concluded that the active enzyme in Triton X-100 is a heterodimer, containing one copy of each subunit. This is likely the structure of the enzyme in the E. coli membrane.  相似文献   

9.
The arrangement of the six cytochrome c oxidase subunits in the inner membrane of bovine heart mitochondria was investigated. The experiments were carried out in three steps. In the first step, exposed subunits were coupled to the membrane-impermeant reagent p-diazonium benzene [32S]sulfonate. In the second step, the membranes were lysed with cholate anc cytochrome c oxidase was isolated by immunoprecipitation. In the third step, the six cytochrome c oxidase subunits were separated from each other by dodecyl sulfate-acrylamide gel electrophoresis and scanned for radioactivity. Exposed subunits on the outer side of the mitochondrial inner membrane were identified by labeling intact mitochondria. Exposed subunits on the matrix side of the inner membrane were identified by labeling sonically prepared submitochondrial particles in which the matrix side of the inner membrane is exposed to the suspending medium. Since sonic irradiation leads to a rearrangement of cytochrome c oxidase in a large fraction of the resulting submitochondrial particles, an immunochemical procedure was developed for isolating particles with a low content of displaced cytochrome c oxidase. With mitochondria, subunits II, V, and VI were labeled, whereas in purified submitochondrial particles most of the label was in subunit III. The arrangement of cytochrome c oxidase in the mitochondrial inner membrane is thus transmembraneous and asymmetric; subunits II, V, and VI are situated on the outer side, subunit III is situated on the matrix side, and subunits I and IV are buried in the interior of the membrane. In a study of purified cytochrome c oxidase labeled with p-diazonium benzene [32S]sulfonate, the results were similar to those obtained with the membrane-bound enzyme. Subunits I and IV were inaccessible to the reagent, whereas the other four subunits were accessible. In contrast, all six subunits became labeled if the enzyme was dissociated with dodecyl sulfate before being exposed to the labeling reagent.  相似文献   

10.
Antibodies against cytochromes b and c1 of bovine heart mitochondria and the photosynthetic bacterium, Rhodopseudomonas sphaeroides R-26, were raised in rabbits. The purified antibodies showed high titers against their respective antigens in enzyme-linked immunosorbent assays. Less than 15% cross-reactivity between the mitochondrial and bacterial cytochromes was detected. Although antibodies against mitochondrial cytochrome b did not inhibit the mitochondrial cytochrome b-c1 complex, a 70% inhibition was obtained when these antibodies were incubated with delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids indicating that the catalytic site(s) of mitochondrial cytochrome b are masked by phospholipids. On the other hand, antibodies against bacterial cytochrome b showed significant inhibition of the intact bacterial cytochrome b-c1 complex, indicating that some of the catalytic site epitopes of bacterial cytochrome b are exposed to the hydrophilic environment. Similar to antibodies against mitochondrial cytochrome b, antibodies against bacterial cytochrome b inhibited 50% activity of the mitochondrial cytochrome b-c1 complex only when they were incubated with the delipidated mitochondrial cytochrome b-c1 complex prior to reconstitution with phospholipids, indicating that the common epitopes between the cytochromes b are masked by phospholipids. Antibodies against mitochondrial and bacterial cytochromes c1 completely inhibited their respective cytochrome b-c1 complexes but no cross-immunoinhibition was observed. However, when antibodies against bacterial cytochrome c1 were incubated with the delipidated mitochondrial cytochrome b-c1 complex before reconstitution with phospholipids, a 65% inhibition was observed, indicating that the common epitopes between the cytochromes c1 were also somewhat masked by phospholipids. Antibodies against mitochondrial cytochrome c1 inhibited 70% of the succinate oxidase activity in the intact mitochondria preparation, but no inhibition was observed in submitochondrial particles, indicating that some mitochondrial cytochrome c1 epitopes are exposed to the cytoplasmic side.  相似文献   

11.
Bovine cytochrome c oxidase subunits were separated by reverse phase high performance liquid chromatography using a C4 column eluted with water and an acetonitrile gradient, both containing 0.1% trifluoroacetic acid. Subunits I and III precipitated in this solvent and could not be analyzed; the remaining eleven subunits were dissociated, denatured, soluble and could be resolved by elution from the column. The protein subunit eluting in each chromatographic peak was identified by a combination of polyacrylamide gel electrophoresis in sodium dodecyl sulfate, NH2-terminal amino acid sequencing, and amino acid analysis. Each subunit produced a single elution peak with the exception of subunit VIc (nomenclature of Kadenbach et al., 1983, Anal. Biochem. 129, 517-521), which eluted from the column as two well-resolved peaks. Sequence analysis showed that the two subunit VIc elution peaks resulted from partial chemical blockage of the alpha-amino serine residue of subunit VIc. The C4 reverse phase HPLC was used to document specific subunit removal from bovine cytochrome c oxidase either by tryptic digestion or by dodecyl maltoside extraction. The described HPLC method for separating cytochrome c oxidase subunits should be applicable for the analysis of other multisubunit proteins, especially other multisubunit membrane protein complexes.  相似文献   

12.
J F Hare  E Ching  G Attardi 《Biochemistry》1980,19(10):2023-2030
Cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1), the terminal oxidase of the respiratory chain in eucaryotic cells, has been purified from human placenta mitochondria. Seven polypeptides have been identified reproducibly by high-resolution electrophoresis of the enzyme complex through sodium dodecyl sulfate (Na-DodSO4)--urea polyacrylamide gels; these correspond closely in size to the subunits of beef heart cytochrome c oxidase. When HeLa cells, grown in suspension culture, were pulse-labeled with [35S]methionine in the presence of cycloheximide to inhibit cytoplasmic protein synthesis and chased with an excess of unlabeled methionine in the absence of the drug, the mitochondrially synthesized polypeptides were resolved into at least 17 components by NaDodSO4--urea polyacrylamide gel electrophoresis. After labeled HeLa mitochondria were mixed with human placenta mitochondria and the cytochrome c oxidase was isolated, three of the labeled components were found to copurify with the three largest subunits of the complex. We conclude that human cytochrome c oxidase contains seven subunits, the three largest of which are synthesized on mitochondrial ribosomes, while the other four are synthesized in the cytoplasm.  相似文献   

13.
N C Robinson  L Talbert 《Biochemistry》1986,25(9):2328-2335
Purified beef heart cytochrome c oxidase, when solubilized with at least 5 mg of Triton X-100/mg of protein, was found to be a monodisperse complex containing 180 molecules of bound Triton X-100 with a protein molecular weight of 200 000, a Stokes radius of 66-72 A, and an s(0)20,w = 8.70 S. These values were determined by measurement of the protein molecular weight by sedimentation equilibrium in the presence of D2O, evaluation of the sedimentation coefficient, S(0)20,w, by sedimentation velocity with correction for its dependence upon the concentration of protein and detergent, and measurement of the effective radius by calibrated Sephacryl S-300 gel chromatography. The monomeric complex was judged to be homogeneous and monodisperse since the effective mass of the complex was independent of the protein concentration throughout the sedimentation equilibrium cell and a single protein schlieren peak was observed during sedimentation velocity. These results are interpreted in terms of a fully active monomeric complex that exhibits typical biphasic cytochrome c kinetics and contains 2 heme a groups and stoichiometric amounts of the 12 subunits normally associated with cytochrome c oxidase. With lower concentrations of Triton X-100, cytochrome c oxidase dimers and higher aggregates can be present together with the monomeric complex. Monomers and dimers can be separated by sedimentation velocity but cannot be separated by Sephacryl S-300 gel filtration, probably because the size of the Triton X-100 solubilized dimer is not more than 20% larger than the Triton X-100 solubilized monomer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary The immunohistochemical reaction of monoclonal as well as polyclonal antibodies against cytochrome c oxidase (COX) subunits with serial sections of normal human skeletal muscle was investigated. The stronger reactivity of polyclonal antibodies to COX subunits II–III and VIIbc with type I as compared to type II fibres, correlated well with the higher histochemical reactivity of NADH dehydrogenase, succinate dehydrogenase and cytochrome c oxidase in type I fibres. In contrast an almost exclusive reaction of a monoclonal antibody against subunit IV with type I fibre and a preponderan reaction of a polyclonal antibody against subunits Vab with type II fibres was obtained. Antibodies against subuntis I, Vb and VIc did not reveal a fibre-type-specific reactivity. The data indicate in human muscle the occurrence of fibre type-specific isozymes of cytochrome c oxidase differing in subunits IV and Va or Vb.  相似文献   

15.
The electron transfer complexes, succinate: ubiquinone reductase, ubiquinone: cytochrome c reductase, and cytochrome c: O2 oxidase were isolated from the mitochondrial membranes of Neurospora crassa by the following steps. Modification of the contents of the complexes in mitochondria by growing cells on chloramphenicol; solubilisation of the complexes by Triton X-100; affinity chromatography on immobilized cytochrome c and ion exchange and gel chromatography. Ubiquinone reductase was obtained in a monomeric form (Mr approximately 130 000) consisting of a flavin subunit (Mr 72 000) an iron-sulfur subunit (Mr 28 000) and a cytochrome b subunit (Mr probably 14 000). Cytochrome c reductase was obtained in a dimeric form (Mr approximately 550 000), the monomeric unit comprising the cytochromes b (Mr each 30 000), a cytochrome c1 (Mr 31 000), the iron-sulfur subunit (Mr 25 000), and six subunits without known prosthetic groups (Mr 9000, 11 000, 14 000, 45 000, 45 000, and 52 000). Cytochrome c oxidase was also isolated in a dimeric form (Mr approximately 320 000) comprising two copies each of seven subunits (Mr 9000, 12 000, 14 000, 18 000, 21 000, 29 000, and 40 000). The complexes were essentially free of phospholipid. Each bound one micelle of Triton X-100 (Mr approximately 90 000). After isolation, the bound Triton X-100 could be replaced by other nonionic detergents such as: alkylphenyl polyoxyethylene ethers, alkyl polyoxyethylene ethers and acyl polyoxyethylene sorbitan esters.  相似文献   

16.
Antibodies raised against three preparations of increasing purity of the microsomal vitamin K-dependent carboxylase did not neutralize essential proteins in the enzyme complex. When immobilized on Sepharose the antibodies removed 75% of contaminating proteins in the starting material, including cytochrome P-450. Immunoaffinity chromatography was more efficient when carried out in the presence of the detergent CHAPS than in the presence of Triton X-100. Immunoabsorption stimulated carboxylase activity 2.9-fold and resulted in a 66-fold increase in the specific activity of the complex.  相似文献   

17.
Poly(A)+RNA from phenol-extracted rat liver polysomes was translated in a heterologous cell-free system derived from wheat germ. The RNA stimulated the incorporation of [35S]methionine into proteins 20- to 30-fold. The labeled translation products were incubated with an antiserum against cytochrome c oxidase. After binding of the antigen x immunoglobulin complex to and elution from protein A-Sepharose and sodium dodecyl sulfate (SDS)-polyacrylamide step gel electrophoresis, autoradiography was carried out. Mainly one major protein with an apparent molecular weight of 19,500 was visualized. When the unlabeled individual cytochrome c oxidase subunits IV, V, VI, or VII, isolated from preparative SDS-polyacrylamide gels, were added to the translation mixture, it was found that only subunit IV could compete with the in vitro-synthesized protein of 19.5 kilodaltons in respect to the binding to the cytochrome c oxidase antiserum. The in vitro-synthesized product was 3,000 daltons larger than the cytochrome c oxidase subunit polypeptide IV. It is concluded that the subunit IV is synthesized as a precursor. Evidence for the precursor form was obtained from translation experiments with [35S]methionine bound to a specific initiator tRNA which led to a radioactively labeled product of identical electrophoretic mobility as the 19.5 kilodalton protein. Furthermore, two dimensional tryptic fingerprints of subunit IV and its precursor show a high degree of similarity.  相似文献   

18.
Bovine heart cytochrome c oxidase has been partially denaturated under mild conditions with 0.1-0.25% lithium dodecyl sulfate and 0.05% Triton X-100. From its reactivity towards CO and CN-, an unmasking of the heme a was inferred in this enzyme. The catalytic activity was lost during the denaturation and small spectral differences became visible. Spectra and ligand binding properties of the denatured enzyme were reversed by dilution in 2% Triton X-100. This suggests that during the denaturation procedure the hemes were not displaced from their original sites. By gel filtration of the partially denatured enzyme the following complexes of subunits were obtained: I-III, I-II-III, II-IV-V-VI-VII and IV-V-VI-VII. The first three complexes retained almost all the heme, and their spectral characteristics were very similar to those of the partially denatured cytochrome c oxidase. The data, in combination with the information that subunit III does not contain heme [Saraste et al. (1980) FEBS Lett. 114, 35-38], suggest that the hemes are attached to subunit I and II. After denaturation of cytochrome c oxidase under more drastic conditions some of the heme was also found to be associated with the smaller subunits, but its spectral characteristics were radically altered, becoming almost identical to those of free heme.  相似文献   

19.
Antibodies were raised against Escherichia coli ribosomal protein S1 and its NH2- and COOH-terminal fragments, and their specificity was demonstrated by a variety of immunological techniques. These antibodies were then used to investigate the location of protein S1 and its NH2- and COOH-terminal domains on the surface of the 30 S ribosomal subunit by immunoelectron microscopy. In order to prevent dissociation of the protein during the experiments, S1 was cross-linked to 30 S subunits with dithiobis(succinimidyl-propionate); cross-linking yield was 100%. Epitopes of the NH2-terminal domain of S1 were localized at the large lobe of the 30 S ribosomal subunit, close to the one-third/two-thirds partition on the side which in the 70 S ribosome faces the cytoplasm. Experiments with monovalent Fab fragments specific for the COOH-terminal part of S1 provide evidence that the COOH-terminal domain forms an elongated structure extending at least 10 nm from the large lobe of the small subunit into the cytoplasmic space.  相似文献   

20.
L Yu  C A Yu 《Biochemistry》1991,30(20):4934-4939
The cytochrome b-c1 complex from Rhodobacter sphaeroides was resolved into four protein subunits by a phenyl-Sepharose CL-4B column eluted with different detergents. Individual subunits were purified to homogeneity. Antibodies against subunit IV (Mr = 15,000) were raised and purified. These antibodies had a high titer with isolated subunit IV and with the b-c1 complex from R. sphaeroides. They inhibited 95% of the ubiquinol-cytochrome c reductase activity of the cytochrome b-c1 complex, indicating that subunit IV is essential for the catalytic function of this complex. When detergent-solubilized chromatopores were passed through an anti-subunit IV coupled Affi-Gel 10 column, no no ubiquinol-cytochrome c reductase activity was detected in the effluent, and four proteins, corresponding to the four subunits in the isolated complex, were adsorbed to the column. This indicated that subunit IV in an integral part of the cytochrome b-c1 complex. No change in the apparent Kms for Q2H2 and for cytochrome c was observed with anti-subunit IV treated complex. Antibodies against subunit IV had little effect on the stability of the ubisemiquinone radical in this complex, suggesting that they do not bind to the subunit near its ubiquinone-binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号